1y
mmmm SCONS

Build your software, better.

SCons4.4.0

MAN page

The SCons Development Team

Version 4.4.02001 - 2022The SCons FoundationReleased Sat, 30 Jul 2022 14:09:41 -0700

Name

scons — a software construction tool
Synopsis
scons [options..] [name=val ..] [targets..]

DESCRIPTION

scons orchestrates the construction of software (and other tangible products such as documentation files) by
determining which component pieces must be built or rebuilt and invoking the necessary commands to build them.
SCons offers many features to improve developer productivity such as parallel builds, caching of build artifacts,
automatic dependency scanning, and a database of information about previous builds so details do not have to be
recal culated each run.

scons requires Python 3.6 or later to run; there should be no other dependencies or requirements. unless the
experimental Ninjatool isused. Support for Python 3.5 isremoved since SCons 4.3.0. The CPython project hasretired
3.5: https://www.python.or g/dev/peps/pep-0478.

You set up an SCons build system by writing a script that describes things to build (targets), and, if necessary, the
rules to build those files (actions). SCons comes with a collection of Builder methods which apply premade actions
for building many common software components such as executable programs, object files and libraries, so that for
many software projects, only the targets and input files (sources) need be specified in a call to a builder. SCons thus
can operate at alevel of abstraction above that of pure filenames. For example if you specify alibrary target named
"foo", SCons keeps track of the actual operating system dependent filename (such as| i bf 00. so on a GNU/Linux
system), and how to refer to that library in later construction steps that want to use it, so you don't have to specify
that precise information yourself. SCons can also scan automatically for dependency information, such as header files
included by source code files (for example, #i ncl ude preprocessor directivesin C or C++ files), so these implicit
dependencies do not have to be specified manually. SCons supports the ability to define new scanners to support
additional input file types.

Information about filesinvolved in the build, including a cryptographic hash of the contents, is cached for later reuse.
By default this hash (the content signature) is used to determine if a file has changed since the last build, but this
can be controlled by selecting an appropriate Deci der function. Implicit dependency files are also part of out-of-
date computation. The scanned implicit dependency information can optionally be cached and used to speed up future
builds. A hash of each executed build action (the build signature is cached, so that changes to build instructions
(changing flags, etc.) or to the build tools themselves (new version) can also trigger a rebuild.

When invoked, scons looks for afile named SConst r uct inthe current directory and reads the build configuration
from that file (other names are allowed, see the section called “SConscript Files’ for more information). The
SConst r uct file may specify subsidiary configuration files by calling the SConscr i pt function. By convention,
thesesubsidiary filesarenamed SConscr i pt , although any name may be used. Asaresult of thisnaming convention,
the term SConscript filesis used to refer generically to the complete set of configuration files for a project (including
the SConst r uct file), regardless of the actual file names or number of such files.

Before reading the SConscript files, scons looks for a directory named si t e_scons in various system directories
and in the directory containing the SConst r uct file or, if specified, the directory from the - - si t e- di r option
instead, and prepends the ones it finds to the Python module search path (sys. pat h), thusallowing modulesin such
directoriesto beimported in the normal Python way in SConscript files. For each found site directory, (1) if it contains
afilesite_init. py that fileisevaluated, and (2) if it containsadirectory si t e_t ool s the path to that directory
isprepended to the default tool path. Seethe- - si t e- di r and- - no- si t e- di r optionsfor detailson default paths
and controlling the site directories.

Iy
=== SCONS 3

https://www.python.org/dev/peps/pep-0478

SConscript files are written in the Python programming language, although it isnormally not necessary to be a Python
programmer to use scons effectively. SConscript files are invoked in a context that makes the facilities described in
this manual page available in their local namespace without any special steps. Standard Python scripting capabilities
such asflow control, data manipulation, and imported Python libraries are available to use to handle complicated build
situations. Other Python files can be made a part of the build system, but they do not automatically have the SCons
context and need to import it if they need access (described later).

scons reads and executes all of the included SConscript files before it begins building any targets. To make this clear,
scons prints the following messages about what it is doing:

$ scons foo. out

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets

cp foo.in foo. out

scons: done buil ding targets.

$

The status messages (lines beginning with the scons: tag) may be suppressed using the - Qoption.

To assure reproducible builds, SCons uses a restricted execution environment for running external commands used
to build targets, rather then propagating the full environment in effect at the time scons was called. This helps avoid
problems like picking up accidental settings, temporary debug values that are no longer needed, or one developer
having different settings than another (or than the CI/CD pipeline). Environment variables that are needed for proper
operation of such commands need to be set explicitly, which can be done either by assigning the desired values, or by
picking values individually out of environment variables using the Python os. envi r on dictionary. The execution
environment for agiven construction environment is contained in its $ENV construction variable. A few environment
variables are picked up automatically - see the section called “ENVIRONMENT").

In particular, if the compiler or other commands that you want to use to build your target files are not in standard
system locations, scons will not find them unless you explicitly include the locations into the PATH element of the
execution environment. One example approach is to extract the entire PATH environment variable and set that into
the execution environment:

i mport os
env = Environment (ENV={' PATH : os.environ[' PATH]})

Similarly, if the commands use specific external environment variables that scons does not recognize, they can be
propagated into the execution environment;

i mport os

env = Environment (

ENV={

"PATH : os.environ[' PATH],

' ANDRO D HOVE' : os. environ[' ANDRO D HOVE' |,

' ANDRO D_NDK_HOVE' : o0s. environ[' ANDRO D_NDK_HOWE'],
}

)

Or you may explicitly propagate the invoking user's complete external environment:

Iy
=== SCONS 4

i mport os
env = Environment (ENV=0s. envi ron. copy())

This comes at the expense of making your build dependent on the user's environment being set correctly, but it may be
more convenient for many configurations. It should not cause problems if donein abuild setup which tightly controls
how the environment is set up before invoking scons, as in many continuous integration setups.

scons is normally executed in a top-level directory containing an SConst r uct file. When scons is invoked, the
command line (including the contents of the SCONSFLAGS environment variable, if set) is processed. Command-line
options (see the section caled “OPTIONS") are consumed. Any variable argument assignments are collected, and
remaining arguments are taken as targets to build.

Values of variables to be passed to the SConscript files may be specified on the command line:

scons debug=1

These variables are available through the ARGUMENTS dictionary, and can be used in the SConscript files to modify
the build in any way:

i f ARGUMENTS. get (' debug', 0):

env = Environnment (CCFLAGS='-g')
el se:

env = Environnent ()

The command-line variable arguments are also availablein the ARGLI ST list, indexed by their order on the command
line. This alows you to process them in order rather than by name, if necessary. Each ARGLI ST entry is a tuple
containing (ar gnare, ar gval ue).

See the section called “ Command-Line Construction Variables’ for more information.

scons can maintain a cache of target (derived) files that can be shared between multiple builds. When derived-file
caching isenabled in an SConscript file, any target filesbuilt by sconswill be copied tothe cache. If an up-to-datetarget
fileis found in the cache, it will be retrieved from the cache instead of being rebuilt locally. Caching behavior may
be disabled and controlled in other ways by the - - cache- f or ce, - - cache- di sabl e, - - cache-readonl y,
and - - cache- showcommand-line options. The - - r andomoption is useful to prevent multiple builds from trying
to update the cache simultaneously.

By default, scons searches for known programming tools on various systems and initializes itself based on what is
found. On Windows systems which identify as win32, scons searches in order for the Microsoft Visual C++ tools,
the MinGW tool chain, the Intel compiler tools, and the PharLap ETS compiler. On Windows system which identify
as cygwin (that is, if sconsisinvoked from a cygwin shell), the order changes to prefer the GCC toolchain over the
MSVC tools. On OS/2 systems, scons searches in order for the OS/2 compiler, the GCC tool chain, and the Microsoft
Visual C++ tools, On SGI IRIX, IBM AlX, Hewlett Packard HP-UX, and Oracle Solaris systems, scons searches for
the native compiler tools (MIPSpro, Visua Age, aCC, and Forte tools respectively) and the GCC tool chain. On all
other platforms, including POSIX (Linux and UNIX) platforms, scons searchesin order for the GCC tool chain, and
the Intel compiler tools. These default values may be overridden by appropriate setting of construction variables.

Target Selection

SCons acts on the selected targets, whether the requested operation is build, no-exec or clean. Targets are selected
asfollows:

1. Targets specified on the command line. These may be files, directories, or phony targets defined using the Al i as
function. Directory targets are scanned by scons for any targets that may be found with a destination in or under
that directory. The targets listed on the command line are made available in the COMVAND LI NE_TARGETS list.

Iy
=== SCONS 5

2. If no targets are specified on the command line, scons will select those targets specified in the SConscript
files via calls to the Def aul t function. These are known as the default targets, and are made available in the
DEFAULT_TARGETS list.

3. If no targets are selected by the previous steps, scons selects the current directory for scanning, unless command-
line options which affect the target scan are detected (- C, - D, - u, - U). Since targets thus selected were not the
result of user instructions, thistarget list is not made available for direct inspection; usethe - - debug=expl ai n
option if they need to be examined.

4. scons always adds to the selected targets any intermediate targets which are necessary to build the specified ones.
For example, if constructing a shared library or dil from C source files, sconswill aso build the object fileswhich
will make up the library.

To ignore the default targets specified through calls to Def aul t and instead build all target files in or below the
current directory specify the current directory (.) as acommand-line target:

scons .

To build al target files, including any files outside of the current directory, supply a command-line target of the root
directory (on POSIX systems):

scons /

or the path name(s) of the volume(s) in which all the targets should be built (on Windows systems):

scons C\ D\

A subset of ahierarchical tree may be built by remaining at the top-level directory (wherethe SConst r uct filelives)
and specifying the subdirectory as the target to build:

scons src/subdir

or by changing directory and invoking scons with the - u option, which traverses up the directory hierarchy until it
findsthe SConst r uct file, and then buildstargets relatively to the current subdirectory (see also the related - D and
- Uoptions):

cd src/subdir
scons -u .
In all cases, more files may be built than are requested, as scons needs to make sure any dependent files are built.

Specifying "cleanup” targetsin SConscript filesis usually not necessary. The - ¢ flag removes all selected targets:

scons -C .

to remove all target filesin or under the current directory, or:

scons -c build export

to removetarget filesunder bui | d and export.

Iy
=== SCONS 6

Additional filesor directoriesto remove can be specified usingthe Cl ean functioninthe SConscript files. Conversely,
targets that would normally be removed by the - ¢ invocation can be retained by calling the NoCl ean function with
those targets.

scons supports building multiple targets in paralel via a -j option that takes, as its argument, the number of
simultaneous tasks that may be spawned:

scons -j 4

builds four targetsin parallel, for example.

OPTIONS

In general, scons supports the same command-line options as GNU Make and many of those supported by cons.

-b
Ignored for compatibility with non-GNU versions of Make

-c,--clean,--renove
Set clean mode. Clean up by removing the selected targets, well as any files or directories associated with a
selected target through callstothe Gl ean function. Will not remove any targetswhich are marked for preservation
through callsto the NoCl ean function.

While clean mode removes targets rather than building them, work which is done directly in Python code in
SConscript files will still be carried out. If it is important to avoid some such work from taking place in clean
mode, it should be protected. An SConscript file can determine which mode is active by querying Get Opt i on,
asinthecal i f Get Option("clean"):

--cache-debug=file
Write debug information about derived-file caching to the specifiedfi | e. If fi | e isahyphen (-), the debug
information is printed to the standard output. The printed messages describe what signature-file names are being
looked for in, retrieved from, or written to the derived-file cache specified by CacheDi r .

--cache-di sabl e,--no-cache
Disable derived-file caching. scons will neither retrieve files from the cache nor copy files to the cache. This
option can be used to temporarily disable the cache without modifying the build scripts.

--cache-force,--cache-popul ate
When using CacheDi r, populate a derived-file cache by copying any already-existing, up-to-date derived files
to the cache, in addition to files built by thisinvocation. Thisis useful to populate anew cache with all the current
derived files, or to add to the cache any derived files recently built with caching disabled via the - - cache-
di sabl e option.

--cache-readonly
Use the derived-file cache, if enabled, to retrieve files, but do not not update the cache with any files actually
built during thisinvocation.

- - cache-show
When using a derived-file cache show the command that would have been executed to build the file (or the
corresponding * COMSTR contentsif set) evenif thefileisretrieved from cache. Without this option, scons shows
acacheretrieval messageif thefileisfetched from cache. This allows producing consistent output for build logs,
regardless of whether atarget file was rebuilt or retrieved from the cache.

- - confi g=node

Control how the Conf i gur e call should use or generate the results of configuration tests. nrode should be one
of the following choices:

Iy
=== SCONS 7

auto
SConswill useits normal dependency mechanisms to decide if atest must be rebuilt or not. This savestime
by not running the same configuration tests every time you invoke scons, but will overlook changesin system
header files or external commands (such as compilers) if you don't specify those dependecies explicitly. This
isthe default behavior.

force
If thismodeis specified, all configuration testswill be re-run regardless of whether the cached results are out
of date. This can be used to explicitly force the configuration tests to be updated in response to an otherwise
unconfigured change in a system header file or compiler.

cache
If thismodeis specified, no configuration testswill bererun and al resultswill be taken from cache. sconswill
report an error if - - conf i g=cache isspecified and a necessary test does not have any resultsin the cache.

directory,--directory=directory

Run as if scons was started in di r ect or y instead of the current working directory. That is, change directory
before searching for the SConst r uct , Sconst r uct ,sconst ruct ,SConst r uct . py, Sconst r uct . py
or sconstruct . py file or doing anything else. When multiple - C options are given, each subsequent non-
absolute - C di rect ory is interpreted relative to the preceding one. This option is similar to using - f
di rect ory/ SConst ruct, but - f does not search for any of the predefined SConst r uct names in the
specified directory. Seealso options- u, - Uand - Dto changethe SConst r uct search behavior when thisoption
is used.

Works exactly the same way as the - u option except for the way default targets are handled. When this option
is used and no targets are specified on the command line, all default targets are built, whether or not they are
below the current directory.

--debug=type[, type...]

Debug the build process. t ype specifies the kind of debugging info to emit. Multiple types may be specified,
separated by commas. The following types are recogni zed:

action-timestamps
Prints additional time profiling information. For each command, shows the absolute start and end times. This
may be useful in debugging parallel builds. Impliesthe - - debug=t i ne option.

Available since scons 3.1.

count
Print how many objects are created of the various classes used internally by SCons before and after reading
the SConscript files and before and after building targets. Thisis not supported when SConsis executed with
the Python - O (optimized) option or when the SCons modules have been compiled with optimization (that
is, when executing from * . pyo files).

duplicate
Print aline for each unlink/relink (or copy) of avariant file from its source file. Includes debugging info for
unlinking stale variant files, aswell as unlinking old targets before building them.

explain
Print an explanation of why sconsis deciding to (re-)build the targets it selects for building.

findlibs
Instruct the scanner that searches for libraries to print a message about each potential library name it is
searching for, and about the actual librariesit finds.

~

'—‘—' SCONS 8

includes
Print the include tree after each top-level target is built. This is generally used to find out what files are
included by the sources of a given derived file:

$ scons --debug=i ncl udes foo.o0

memoizer
Prints a summary of hits and misses using the Memoizer, an internal subsystem that counts how often SCons
uses cached values in memory instead of recomputing them each time they're needed.

memory
Prints how much memory SCons uses before and after reading the SConscript files and before and after
building targets.

objects
Printsalist of the various objects of the various classes used internally by SCons.

pdb
Re-run scons under the control of the pdb Python debugger.

prepare
Print aline each time any target (internal or external) is prepared for building. scons printsthisfor each target
it considers, even if that target is up to date (see also - - debug=expl ai n). This can help debug problems
with targets that aren't being built; it shows whether sconsis at least considering them or not.

presub
Print the raw command line used to build each target before the construction environment variables are
substituted. Also shows which targets are being built by this command. Output |ooks something like this:

$ scons --debug=presub
Bui | di ng myprog.o with action(s):
$SHCC $SHCFLAGS $SHCCFLAGS $CPPFLAGS $_CPPI NCFLAGS -c -0 $TARGET $SOURCES

stacktrace
Prints an internal Python stack trace when encountering an otherwise unexplained error.

time
Prints various time profiling information:

» Thetime spent executing each individual build command

The total build time (time SCons ran from beginning to end)

The total time spent reading and executing SConscript files

The total time SCons itself spent running (that is, not counting reading and executing SConscript files)

The total time spent executing al build commands
» The elapsed wall-clock time spent executing those build commands
» Thetime spent processing each file passed to the SConscr i pt function

(When scons is executed without the - j option, the elapsed wall-clock time will typically be dightly longer
than the total time spent executing all the build commands, due to the SCons processing that takes place in
between executing each command. When sconsis executed with the - j option, and your build configuration

Iy
=== SCONS 9

allows good parallelization, the elapsed wall-clock time should be significantly smaller than the total time
spent executing all the build commands, since multiple build commands and intervening SCons processing
should take place in parallel.)

--di skcheck=t ype
Enable specific checks for whether or not thereis afile on disk where the SCons configuration expects adirectory
(or viceversa) when searching for source and includefiles. t ype can be an available diskcheck type or the special
tokensal | ornone. A comma-separated string can be used to select multiple checks. The default settingisal | .

Current available checks are:

match
to check that files and directories on disk match SCons' expected configuration.

Disabling some or all of these checks can provide a performance boost for large configurations, or when the
configuration will check for filesand/or directories across networked or shared file systems, at the slight increased
risk of an incorrect build or of not handling errors gracefully.

- -dupl i cat e=ORDER
There are three ways to duplicate files in a build tree: hard links, soft (symbolic) links and copies. The default
policy isto prefer hard links to soft links to copies. Y ou can specify a different policy with this option. ORDER
must be one of hard-soft-copy (the default), soft-hard-copy, hard-copy, soft-copy or copy. SCons will attempt to
duplicate files using the mechanisms in the specified order.

--enabl e-virtual env
Import virtualenv-related variables to SCons.

--experiment al =f eature
Enable experimental features and/or tools. f eat ur e can be an available feature name or the special tokensal |
or none. A comma-separated string can be used to select multiple features. The default setting isnone.

Current available features are: ni nj a.

Caution

No Support offered for any features or tools enabled by this flag.
Available since scons 4.2.

-f file,--file=file,--makefile=file,--sconstruct=file
Usefi | e astheinitial SConscript file. Multiple - f options may be specified, in which case scons will read all
of the specified files.

-h,--hel p
Print alocal help message for this project, if oneis defined in the SConscript files (see the Hel p function), plus
a line that refers to the standard SCons help message. If no local help message is defined, prints the standard
SCons help message (as for the - H option) plus help for any local options defined through AddOpt i on. Exits

after displaying the appropriate message.

Note that use of this option requires SCons to process the SConscript files, so syntax errors may cause the help
message hot to be displayed.

- - hash- chunksi ze=KI LOBYTES
Set the block size used when computing content signatures to KI LOBYTES. This value determines the size of
the chunks which are read in at once when computing signature hashes. Files below that size are fully stored in
memory before performing the signature computation while bigger filesare read in block-by-block. A huge block-
size leads to high memory consumption while avery small block-size slows down the build considerably.

Iy
=== SCONS 10

The default value is to use a chunk size of 64 kilobytes, which should be appropriate for most uses.

Available since scons 4.2.

- - hash- f or rat =ALGORI THM

-H,

Set the hashing algorithm used by SCons to ALGORI THM This value determines the hashing algorithm used in
generating content signatures or CachebDi r keys.

The supported list of values are: md5, shal, and sha256. However, the Python interpreter used to run SCons must
have the corresponding support available in the hashl i b module to use the specified algorithm.

Specifying this value changes the name of the SConsign database. For example, - - hash- f or mat =sha256
will create a SConsign database with name. sconsi gn_sha256. dblite.

If this option is not specified, athefirst supported hash format found is selected. Typically thisis MD5, however,
if you are on a FIPS-compliant system and using a version of Python less than 3.9, SHA1 or SHA256 will be
chosen as the default. Python 3.9 and onwards clients will always default to MD5, even in FIPS mode, unless
otherwise specified with the - - hash- f or mat option.

For MD5 databases (either explicitly specified with - - hash- f or mat =nd5 or defaulted), the SConsign
databaseis. sconsi gn. dbl i t e. The newer SHA1 and SHA 256 sel ections meanwhile store their databases to
.sconsign_algorithmane.dblite

Available since scons 4.2.

- - hel p-options
Print the standard help message about SCons command-line options and exit.

,--ignore-errors

Ignore all errors from commands executed to rebuild files.

directory,--include-dir=directory
Specifiesadi r ect or y to search for imported Python modules. If several - | options are used, the directories
are searched in the order specified.

gnor e-vi rtual env
Suppress importing virtualenv-related variables to SCons.

nplicit-cache

Cache implicit dependencies. This causes scons to use the implicit (scanned) dependencies from the last time it
was run instead of scanning the files for implicit dependencies. This can significantly speed up SCons, but with
the following limitations:

scons will not detect changes to implicit dependency search paths (e.g. $CPPPATH, $L1 BPATH) that would
ordinarily cause different versions of same-named files to be used.

scons will miss changes in the implicit dependencies in cases where a new implicit dependency is added earlier
in the implicit dependency search path (e.g. $CPPPATH, $L1 BPATH) than a current implicit dependency with
the same name.

nplicit-deps-changed
Forces SCons to ignore the cached implicit dependencies. This causes the implicit dependencies to be rescanned
and recached. Thisimplies- - i npl i ci t - cache.

nplicit-deps-unchanged
Force SConsto ignore changes in the implicit dependencies. This causes cached implicit dependencies to always
be used. Thisimplies--i npl i cit-cache.

~

'—‘—' SCONS 11

--install-sandbox=sandbox_pat h
When using the | nst al | builders, prepend sandbox_pat h to the installation paths such that all installed
files will be placed under that directory. This option is unavailable if one of I nstall, I nstall As or
I nst al | Ver si onedLi b isnot used in the SConscript files.

--interactive
Starts SCons in interactive mode. The SConscript files are read once and ascons>>> prompt is printed. Targets
may now be rebuilt by typing commands at interactive prompt without having to re-read the SConscript files and
re-initialize the dependency graph from scratch.

SCons interactive mode supports the following commands:

bui I d [OPTI ONS] [TARGETS]
Builds the specified TARGETS (and their dependencies) with the specified SCons command-line OPTI ONS.
b and scons are synonyms for build.

The following SCons command-line options affect the build command:

--cache- debug=FI LE
--cache-di sabl e, --no-cache
--cache-force, --cache-popul ate
--cache-readonly

- - cache-show

- - debug=TYPE

-i, --ignore-errors

-j N, --jobs=N

-k, --keep-going

-n, --no-exec, --just-print, --dry-run, --recon
-Q
-s, --silent, --quiet

--taskmast ertrace=FI LE
--tree=0PTI ONS

Any other SCons command-line options that are specified do not cause errors but have no effect on the build
command (mainly because they affect how the SConscript files are read, which only happens once at the
beginning of interactive mode).

cl ean [OPTI ONS] [TARGETS]
Cleans the specified TARGETS (and their dependencies) with the specified OPTI ONS. ¢ isasynonym. This
command isitself asynonym for bui | d - - cl ean

exit
Exits SCons interactive mode. You can also exit by terminating input (Ctrl+D UNIX or Linux systems,
(Ctrl+Z on Windows systems).

hel p [COVMAND]|
Provides a help message about the commands available in SCons interactive mode. If COMMAND is
specified, h and ? are synonyms.

shel | [COMVANDLI NE]
Executes the specified COVIVANDLI NE in a subshell. If no COVMANDLI NE is specified, executes the
interactive command interpreter specified in the SHELL environment variable (on UNIX and Linux systems)
or the COVSPEC environment variable (on Windows systems). sh and ! are synonyms.

Ver si on
Prints SCons version information.

Iy
=== SCONS 12

An empty line repeats the last typed command. Command-line editing can be used if the readline module is
available.

$ scons --interactive

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons>>> build -n prog

scons>>> exit

-j N --jobs=N
Specifies the maximum number of comcurrent jobs (commands) to run. If thereis more than one - j option, the
last oneis effective.

-k, --keep-goi ng
Continue as much as possible after an error. The target that failed and those that depend on it will not be remade,
but other targets specified on the command line will still be processed.

-m
Ignored for compatibility with non-GNU versions of Make.

- - max- dri f t =SECONDS
Set the maximum expected drift in the modification time of files to SECONDS. This value determines how long
afile must be unmodified before its cached content signature will be used instead of calculating a new content
signature (hash) of the file's contents. The default value is 2 days, which means a file must have a modification
time of at least two days ago in order to have its cached content signature used. A negative value means to never
cache the content signature and to ignore the cached value if there aready is one. A value of 0 means to always
use the cached signature, no matter how old thefileis.

- - md5- chunksi ze=KI LOBYTES
A deprecated synonym for - - hash- chunksi ze.

Deprecated since scons 4.2.

-n,--no-exec,--just-print,--dry-run,--recon
Set no execute mode. Print the commands that would be executed to build any out-of-date target files, but do not
execute the commands.

The output is a best effort, as SCons cannot aways precisely determine what would be built. For example, if a
fileis generated by abuilder action that islater used in the build, that file is not available to scan for dependencies
on an unbuilt tree, or may contain out of date information in abuilt tree.

Work which isdonedirectly in Python codein SConscript files, as opposed to work done by builder actions during
the build phase, will still be carried out. If it isimportant to avoid some such work from taking placein no execute
mode, it should be protected. An SConscript file can determine which mode is active by querying Get Opt i on,
asinthecall i f Get Option("no_exec"):

--no-site-dir
Prevents the automatic addition of the standard si t e_scons dirs to sys. pat h. Also prevents loading
the site_scons/site_init.py modules if they exist, and prevents adding their site_scons/
si t e_t ool s dirsto thetoolpath.

- - package-t ype=t ype
The type or types of package to create when using the Package builder. In the case of multiple types, t ype
should be a comma-separated string; SCons will try to build for all of those packages. Note this option is only
available if the packagi ng tool has been enabled.

Iy
=== SCONS 13

--profile=file
Run SCons under the Python profiler and save the results in the specified f i | e. The results may be analyzed
using the Python pstats module.

-q,--question
Do not run any commands, or print anything. Just return an exit status that is zero if the specified targets are
already up to date, non-zero otherwise.

-Q
Quiets SCons status messages about reading SConscript files, building targets and entering directories. Commands
that are executed to rebuild target files are till printed.

--random
Build dependencies in arandom order. This is useful when building multiple trees simultaneously with caching
enabled, to prevent multiple builds from simultaneously trying to build or retrieve the same target files.

-s,--silent,--quiet
Silent. Do not print commands that are executed to rebuild target files. Also suppresses SCons status messages.

-S, - - no- keep-goi ng, - -stop
Ignored for compatibility with GNU Make

--site-dir=path
Use a specific pat h as the site directory rather than searching the list of default site directories. This directory
will be prepended to sys. pat h, the module pat h/ site_i nit. py will be loaded if it exists, and pat h/
site_t ool s will beadded to the default tool path.

The default set of site directories searched when - - si t e- di r isnot specified depends on the system platform,
asfollows. Users or system administrators can tune site-specific or project-specific SCons behavior by setting up
adite directory in one or more of these locations. Directories are examined in the order given, from most generic
("system" directories) to most specific (in the current project), so the last-executed si t e_i ni t. py fileisthe
most specific one, giving it the chance to override everything else), and the directories are prepended to the paths,
again so the last directory examined comesfirst in the resulting path.

Windows:

YALLUSERSPROFI LE% scons/ site_scons
% OCALAPPDATAY% scons/ site_scons
Y%APPDATA% scons/ site_scons
%JSERPROFI LE% . scons/ site_scons
./site_scons

Note earlier versions of the documentation listed a different path for the "system" site directory, this path is
till checked but its use is discouraged:
YALLUSERSPROFI LE% Appl i cati on Data/scons/site_scons
Mac OS X:
[Li brary/ Application Support/SCons/site_scons

/opt/ | ocal /share/scons/site_scons (for MacPorts)
/ sw/ share/ scons/site_scons (for Fink)

Iy
=== SCONS 14

$HOVE/ Li brary/ Appl i cati on Support/SCons/site_scons
$HOVE/ . scons/ site_scons
./site_scons

Solaris:

[opt/sfw scons/site_scons

[usr/share/ scons/site_scons
$HOMVE/ . scons/ site_scons
./site_scons

Linux, HPUX, and other Posix-like systems:

[usr/share/ scons/site_scons
$HOMVE/ . scons/ site_scons
./site_scons

- - st ack-si ze=KI LOBYTES
Set the size stack used to run threads to KI LOBYTES. This value determines the stack size of the threads used
to run jobs. These threads execute the actions of the builders for the nodes that are out-of-date. This option has
no effect unless the number of concurrent build jobs is larger than one (assetby -j Nor - - j obs=N on the
command line or Set Opt i on in ascript).

Using a stack size that istoo small may cause stack overflow errors. This usually shows up as segmentation faults
that cause sconsto abort before building anything. Using a stack sizethat istoo large will cause sconsto use more
memory than required and may slow down the entire build process. The default value is to use a stack size of
256 kilobytes, which should be appropriate for most uses. Y ou should not need to increase this value unless you
encounter stack overflow errors.

-t,--touch
Ignored for compatibility with GNU Make. (Touching a file to make it appear up-to-date is unnecessary when
using scons.)

--taskmastertrace=file
Prints trace information to the specified f i | e about how the internal Taskmaster object evaluates and controls
the order in which Nodes are built. A file name of - may be used to specify the standard output.

--tree=type[,type...]
Printsatree of the dependencies after each top-level target isbuilt. Thisprints out someor al of thetree, invarious
formats, depending on thet ype specified:

all
Print the entire dependency tree after each top-level target is built. This prints out the complete dependency
tree, including implicit dependencies and ignored dependencies.

derived
Restricts the tree output to only derived (target) files, not source files.

linedraw
Draw the tree output using Unicode line-drawing charactersinstead of plain ASCI| text. Thisoption actsasa
modifier tothe selectedt ype(s). If specified alone, without any t ype, it behavesasif all had been specified.

Available since scons 4.0.

Iy
=== SCONS 15

status
Prints status information for each displayed node.

prune
Prunes the tree to avoid repeating dependency information for nodes that have already been displayed. Any
node that has aready been displayed will have its name printed in [squar e brackets], as an indication that
the dependencies for that node can be found by searching for the relevant output higher up in the tree.

Multiplet ype choices may be specified, separated by commas:

Prints only derived files, with status information:
scons --tree=derived, st atus

Prints all dependencies of target, with status information
and pruni ng dependenci es of already-visited Nodes:
scons --tree=all, prune, status target

-u,--up,--search-up

Walks up the directory structure until an SConst r uct, Sconst ruct, sconstruct, SConstruct. py,
Sconstruct. py orsconst ruct . py fileisfound, and uses that as the top of the directory tree. If no targets
are specified on the command line, only targets at or below the current directory will be built.

Works exactly the same way asthe - u option except for the way default targets are handled. When this option is
used and no targets are specified on the command line, all default targets that are defined in the SConscript(s) in
the current directory are built, regardless of what directory the resultant targets end up in.

-V,--version

Print the scons version, copyright information, list of authors, and any other relevant information. Then exit.

-w,--print-directory

Print a message containing the working directory before and after other processing.

--no-print-directory

Turn off -w, even if it was turned on implicitly.

- -war n=t ype, - - war n=no- t ype

Enable or disable (with the prefix "no-") warnings (- - war ni ng is a synonym). t ype specifies the type of
warnings to be enabled or disabled:

all
All warnings.

cache-version
Warnings about the derived-file cache directory specified by CacheDi r not using the latest configuration
information. These warnings are enabled by default.

cache-write-error
Warnings about errors trying to write a copy of a built file to a specified derived-file cache specified by
CacheDi r . These warnings are disabled by defaullt.

corrupt-sconsign
Warnings about unfamiliar signature datain . sconsi gn files. These warnings are enabled by default.

dependency
Warnings about dependencies. These warnings are disabled by default.

~

'—‘—' SCONS 16

depr ecated
Warnings about use of currently deprecated features. These warnings are enabled by default. Not all
deprecation warnings can be disabled with the - - war n=no- depr ecat ed option as some deprecated
features which are late in the deprecation cycle may have been designated as mandatory warnings, and these
will still display. Warnings for certain deprecated features may also be enabled or disabled individually; see
below.

duplicate-environment
Warnings about attempts to specify a build of atarget with two different construction environments that use
the same action. These warnings are enabled by default.

fortran-cxx-mix
Warnings about linking Fortran and C++ object files in a single executable, which can yield unpredictable
behavior with some compilers.

future-deprecated
Warnings about featuresthat will be deprecated in the future. Such warnings are disabled by default. Enabling
future deprecation warnings is recommended for projects that redistribute SCons configurations for other
usersto build, so that the project can be warned as soon as possible about to-be-deprecated features that may
require changes to the configuration.

link
Warnings about link steps.

misleading-keywor ds
Warnings about the use of two commonly misspelled keywordst ar get s andsour ces toBui | der calls.
The correct spelling is the singular form, even though t ar get and sour ce can themselves refer to lists
of names or nodes.

tool-gt-depr ecated
Warnings about the qt tool being deprecated. These warnings are disabled by default for the first phase of
deprecation. Enable to be reminded about use of thistool module. Available since SCons 4.3.

missing-sconscript
Warnings about missing SConscript files. These warnings are enabled by default.

no-obj ect-count
Warnings about the - - debug=0bj ect feature not working when sconsis run with the Python - O option
or from optimized Python (.pyo) modules.

no-par allel-support
Warnings about the version of Python not being able to support parallel builds when the - j option is used.
These warnings are enabled by default.

python-version
Warnings about running SCons with a deprecated version of Python. These warnings are enabled by default.

reserved-variable
Warnings about attempts to set the reserved construction variable names $CHANGED SOURCES,
$CHANGED TARGETS, $TARGET, $TARGETS, $SOURCE, $SOURCES, $UNCHANGED SOURCES or
$UNCHANGED _TARGETS. These warnings are disabled by default.

stack-size
Warningsabout requeststo set the stack size that could not be honored. Thesewarnings are enabled by default.

target_not_build
Warnings about a build rule not building the expected targets. These warnings are disabled by default.

Iy
=== SCONS 17

-Y repository,--repository=repository,--srcdir=repository
Search the specified r eposi t ory for any input and target files not found in the local directory hierarchy.
Multiple - Y options may be specified, in which case the repositories are searched in the order specified.

SCONSCRIPT FILE REFERENCE

SConscript Files

The build configuration is described by one or more files, known as SConscript files. There must be at least one file
for avalid build (sconswill quit if it does not find one). scons by default looks for thisfile by the name SConst r uct
in the directory from which you run scons, though if necessary, also looks for aternative file names Sconst r uct ,
sconstruct, SConst ruct . py, Sconstruct. py and sconst ruct . py inthat order. A different file name
(which can include a pathname part) may be specified viathe - f option. Except for the SConstruct file, these files
are not searched for automatically; you add additional configuration files to the build by calling the SConscr i pt
function. This alows parts of the build to be conditionally included or excluded at run-time depending on how scons
isinvoked.

Each SConscript filein abuild configuration is invoked independently in a separate context. This provides necessary
isolation so that different parts of the build don't accidentally step on each other. Y ou have to be explicit about sharing
information, by using the Expor t function or the expor t s argument to the SConscr i pt function, aswell asthe
Ret ur n function in a called SConscript file, and comsume shared information by using the | npor t function.

The following sections describe the various SCons facilities that can be used in SConscript files. Quick links:

Construction Environments

Tools

Builder Methods

Methods and Functions to do Things
SConscript Variables

Construction Variables

Configure Contexts

Command-Line Construction Variables
Node Objects

Construction Environments

A Construction Environment is the basic means by which you communicate build information to SCons. A new
construction environment is created using the Envi r onment function:

env = Environment ()

Construction environment attributes called Construction Variables may be set either by specifying them as keyword
arguments when the object is created or by assigning them avalue after the object is created. These two are nominally
equivalent:

env = Environnment (FOO=' f 00")
env[' FOO] = 'foo

Note that certain settings which affect tool detection are referenced only when the tools areinitializided, so you either
need either to supply them as part of the call to Envi r onnent , or defer tool initialization. For example, initializing
the Microsoft Visual C++ version you wish to use:

Iy
=== SCONS 18

initializes msvc to vi4d.1
env = Environment (MSVC_VERSI ON="14. 1")

env = Environment ()
nmsvc tool was initialized to default, does not reinitialize
env[' MSVC VERSION'] = "14. 1"

env = Environment (tool s=[])

env[' MSVC VERSION] = "14.1"

mevc tool initialization was deferred, so will pick up new val ue
env. Tool (' default")

Asaconvenience, construction variablesmay also be set or modified by thepar se_f | ags keyword argument during
object creation, which has the effect of the env. Mer geFl ags method being applied to the argument value after all
other processing is completed. This is useful either if the exact content of the flags is unknown (for example, read
from a control file) or if the flags need to be distributed to a number of construction variables. env. Par seFl ags
describes how these arguments are distributed to construction variables.

env = Environnent (parse_flags='-1linclude -DEBUG -1 m)
This example adds 'include’ to the $CPPPATH construction variable, 'EBUG' to $CPPDEFI NES, and 'm' to $L1 BS.

An existing construction environment can be duplicated by calling the env. Cl one method. Without arguments, it
will be a copy with the same settings. Otherwise, env. C one takes the same arguments as Envi r onnent , and
uses the arguments to create a modified copy.

SCons provides a special construction environment called the Default Environment. The default environment is
used only for global functions, that is, construction activities called without the context of a regular construction
environment. See Def aul t Envi r onnment for more information.

By default, a new construction environment isinitialized with a set of builder methods and construction variables that
are appropriate for the current platform. The optional pl at f or mkeyword argument may be used to specify that the
construction environment should be initialized for a different platform:

env = Environment (pl atform=' cygwi n')

Specifying a platform initializes the appropriate construction variables in the environment to use and generate file
names with prefixes and suffixes appropriate for that platform.

Note that the wi n32 platform adds the Syst enDri ve and Syst enRoot variables from the user's external
environment to the construction environment's ENV dictionary. Thisis so that any executed commandsthat use sockets
to connect with other systems will work on Windows systems.

The pl at f or margument may be a string value representing one of the pre-defined platforms (ai x, cygwi n,
darwi n,hpux,irix,0s2,posi X,sunos orwi n32), or it may be be acallable platform object returned by acall
toPl at f or mselecting apre-defined platform, or it may beauser-supplied callable, inwhich casethe Envi r onnent
method will call it to update the new construction environment:

def ny_platfornm(env):
env[' VAR | = 'xyzzy'

env = Environment (pl atfor meny_pl at f orm

Iy
=== SCONS 19

Note that supplying a non-default platform or custom fuction for initialization may bypass settings that should happen
for the host system and should be used with care. It is most useful in the case where the platform is an alternative for
the one that would be auto-detected, such as pl at f or m=" cygwi n" on a system which would otherwise identify
asw n32.

The optional t ool s and t ool pat h keyword arguments affect the way tools available to the environment are
initialized. See the section called “Tools’ for details.

Theoptional var i abl es keyword argument allows passing aV ariables object which will be used intheinitialization
of the construction environment See the section called “ Command-Line Construction Variables’ for details.

Tools

SCons has alarge number of predefined tool modules (more properly, tool specification modules) which are used to
help initialize the construction environment. An SConstool isonly responsiblefor setup. For example, if an SConscript
file declares the need to construct an object file from a C-language source file by calling the Obj ect builder, then a
tool representing an available C compiler needsto haverun first, to set up that builder and all the construction variables
it needs in the associated construction environment; the tool itself is not called in the process of the build. Normally
this happensinvisibly as scons has per-platform lists of default tools, and it steps through those tools, calling the ones
which are actually applicable, skipping those where necessary programs are not installed on the build system, or other
preconditions are not met.

A specific set of tools with which to initialize an environment when creating it may be specified using the optional
keyword argument t ool s, which takes alist of tool names. This is useful to override the defaults, to specify non-
default built-in tools, and to supply added tools:

env = Environnent (tool s=['nsvc', 'lex'])
Tools can aso be directly called by using the Tool method (see below).

Thet ool s argument overrides the default tool list, it does not add to it, so be sure to include all the tools you need.
For example if you are building a c/c++ program you must specify atool for at least a compiler and alinker, asin
tools=['clang', 'link'].Thetool name' defaul t' can beused to retain the default list.

If not ool s argument isspecified, orif t ool s includes' def aul t ', then sconswill auto-detect usabletools, using
the execution environment value of PATH (that is, env[' ENV'][' PATH] - the external evironment PATH from
0s. envi ron is not used) for looking up any backing programs, and the platform name in effect to determine the
default tools for that platform. Changing the PATH variable after the construction environment is constructed will not
cause the tools to be re-detected.

Additional tools can be added, see the Extending SCons section and specifically Tool Modules.
SCons supports the following tool specifications out of the box:

386asm
Sets construction variables for the 386ASM assembler for the Phar Lap ETS embedded operating system.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

aixct+
Sets construction variables for the IMB xIc / Visual Age C++ compiler.

Sets: $CXX, SCXXVERSI QN, $SHCXX, $SHOBJ SUFFI X.

Iy
=== SCONS 20

aixcc
Sets construction variables for the IBM xlc/ Visual Age C compiler.

Sets: $CC, $CCVERSI ON, $SHCC.

aixf77
Sets construction variables for the IBM Visua Age f77 Fortran compiler.

Sets: $F77, $SHF77.

aixlink
Sets construction variables for the IBM Visua Agelinker.

Sets: $LI NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.

appleink
Sets construction variables for the Apple linker (similar to the GNU linker).
Sets: $APPLELI NK_COWPATI BI LI TY_VERSI ON, $APPLELI NK_CURRENT_VERSI ON,
$APPLELI NK_NO_COWPATI BI LI TY_VERSI ON, $APPLELI NK_NO_CURRENT_VERSI ON,
$FRAVEWORKPATHPREFI X, $LDMODULECOM $LDMODULEFLAGS, $LDMODUL EPREFI X,
$LDMODULESUFFI X, $LI NKCOM $SHLI NKCOM $SHLI NKFLAGS,
$_APPLELI NK_COWVPATI BI LI TY_VERSI ON, $_APPLELI NK_CURRENT_VERSI ON,

$_FRAVEVORKPATH, $_ FRAMEVIORKS.
Uses: $FRAMEWORKSFLAGS.

ar
Sets construction variables for the ar library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $RANLI B, $RANLI BCOM $RANLI BFLAGS.

Sets construction variables for the as assembler.
Sets: $AS, SASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $CC, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

bcc32
Sets construction variables for the bcc32 compiler.

Sets: $CC, $CCCOM $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X,
$1 NCPREFI X, $I NCSUFFI X, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHOBJ SUFFI X.

Uses: $_CPPDEFFLAGS, $_CPPI NCFLAGS.

cc
Sets construction variables for generic POSIX C compilers.

Sets: $CC, $CCCOM $CCDEPFLAGS, $CCFLAGS, $CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X,
$CPPDEFSUFFI X, $FRAMEWORKPATH, $FRAMEWORKS, $I NCPREFI X, $1 NCSUFFI X, $SHCC,
$SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHOBJ SUFFI X.

Uses: $CCCOVBTR, $PLATFORM $SHCCCOVSTR.

clang
Set construction variables for the Clang C compiler.

Iy
=== SCONS 21

Sets: $CC, $CCDEPFLAGS, $CCVERSI ON, $SHCCFLAGS.

clangxx
Set construction variables for the Clang C++ compiler.

Sets: $CXX, $CXXVERS! ON, $SHCXXFLAGS, $SHOBISUFFI X,
$STATI C_AND_SHARED OBJECTS ARE_THE_SAME.

compilation_db
Setsup Conpi | at i onDat abase builder which generates a clang tooling compatible compilation database.

Sets: $COWVPI LATI ONDB_COMSTR, $COVPI LATI ONDB_PATH_FI LTER,
$COVPI LATI ONDB_USE_ABSPATH.

cvf
Sets construction variables for the Compag Visual Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM $FORTRANMODDI R, $FORTRANMODDI RPREFI X,
$FORTRANMODDI RSUFFI X, $FORTRANPPCOM $0BJ SUFFI X, $SHFORTRANCOM $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANFLAGS, $SHFORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANI NCFLAGS,
$_FORTRANMODFLAG

cXX
Sets construction variables for generic POSIX C++ compilers.

Sets:. $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X, $CXXFLAGS,
$I NCPREFI X, $1 NCSUFFI X, $O0BJ SUFFI X, $SHCXX, $SHCXXCOM $SHCXXFLAGS, $SHOBJ SUFFI X.

Uses: $CXXCOVBTR, $SHCXXCOVSTR.

cyglink
Set construction variables for cygwin linker/loader.

Sets: $I MPLI BPREFI X, $I MPLI BSUFFI X, $LDMODULEVERSI ONFLAGS, $LI NKFLAGS,
$RPATHPREFI X, $RPATHSUFFI X, $SHLI BPREFI X, $SHLI BSUFFI X, $SHLI BVERSI ONFLAGS,
$SHLI NKCOM $SHLI NKFLAGS, $_LDMODULEVERSI ONFLAGS, $_SHLI BVERSI ONFLAGS.

default
Sets construction variables for a default list of Tool modules. Use default in the tools list to retain the original
defaults, since the t ool s parameter is treated as a literal statement of the tools to be made available in that
construction environment, not an addition.

Thelist of tools selected by default isnot static, but is dependent both on the platform and on the softwareinstalled
on the platform. Sometoolswill not initialize if an underlying command is not found, and some tools are sel ected
from alist of choices on a first-found basis. The finished tool list can be examined by inspecting the $TOOLS
construction variable in the construction environment.

On all platforms, the tools from the following list are selected if their respective conditions are met: filesystem;,
wix, | ex, yacc, rpcgen, swi g, jar, javac, javah, rm c, dvi pdf, dvi ps, gs, tex, | atex,
pdf | at ex, pdftex,tar,zip,textfile.

On Linux systems, the default tools list selects (first-found): a C compiler from gcc,intel c,icc, cc;aC
++ compiler from g++, i nt el ¢, i cc, cXX; an assembler from gas, nasm masny alinker from gnul i nk,
i 1'i nk; aFortran compiler fromgfortran,g77,ifort,ifl,f95,f90,f77; and astatic archiver ar . It
also selects all found from the list m4 rpm.

Iy
=== SCONS 22

OnWindows systems, the default toolslist selects (first-found): aC compiler fromnsvc, m ngw,gcc,i ntel c,
icl,icc,cc,bcc32;aC++compilerfromnsvc,intel c,icc,g++,cXX, bcc32;anassembler frommasm
nasm gas, 386asny alinker from sl i nk, gnul i nk,ilink,|inkloc,ilink32;aFortran compiler
fromgfortran,g77,ifl,cvf,f95,f90,fortran; andastatc archiver fromnsli b,ar,tlib;Itaso
selectsal found from thelist msvs, mi dl .

On MacOS systems, the default tools list selects (first-found): a C compiler from gcc, cc; a C++ compiler from
g++, cXX; an assembler as; alinker from appl el i nk, gnul i nk; aFortran compiler fromgf ortran, f 95,
f90,g77; and astatic archiver ar . It dso selects all found from the list m4, rpm.

Default lists for other platforms can be found by examining the scons source code (see SCons/ Tool /
_init__.py).

dmd
Sets construction variables for D language compiler DMD.

Sets. $DC, $DCOM $DDEBUG, $DDEBUGPREFI X, $DDEBUGSUFFI X, $DFI LESUFFI X,
$DFLAGPREFI X, $DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B,
$DLI BCOM $DLI BDI RPREFI X, $DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X,
$DLI BLI NKPREFI X, $DLI BLI NKSUFFI X, $DLINK, $DLI NKCOM $DLI NKFLAGPREFI X,
$DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH, $DRPATHPREFI X, $DRPATHSUFFI X, $DVERPREFI X,
$DVERSI ONS, $DVERSUFFI X, $SHDC, $SHDCOM $SHDLI BVERSI ONFLAGS, $SHDLI NK,
$SHDLI NKCOM $SHDLI NKFLAGS.

docbook
Thistool tries to make working with Docbook in SCons a little easier. It provides several toolchains for creating
different output formats, like HTML or PDF. Contained in the package is a distribution of the Docbook XSL
stylesheetsas of version 1.76.1. Aslong asyou don't specify your own stylesheetsfor customization, these official
versions are picked as default...which should reduce the inevitable setup hassles for you.

Implicit dependencies to images and XIncludes are detected automatically if you meet the HTML requirements.
The additional stylesheet ut i | s/ xm depend. xsl by Paul DuBoisis used for this purpose.

Note, that there is no support for XML catalog resolving offered! Thistool callsthe XSLT processors and PDF
renderers with the stylesheets you specified, that'sit. The rest liesin your hands and you still have to know what
you're doing when resolving names via a catalog.

For activating the tool "docbook", you have to add its name to the Environment constructor, like this

env = Environnent (t ool s=[' dochook'])

On its startup, the docbook tool triesto find arequired xsl t pr oc processor, and a PDF renderer, e.g. fop. So
make sure that these are added to your system's environment PATH and can be called directly without specifying
their full path.

For the most basic processing of Docbook to HTML, you need to have installed

e thePython| xm bindingtol i bxm 2, or

» astandalone XSLT processor, currently detected are xdltproc, saxon, saxon-xst and xalan.

Rendering to PDF requires you to have one of the applications fop or xep installed.

Creating aHTML or PDF document is very simple and straightforward. Say

env = Environment (t ool s=[' docbook'])

Iy
=== SCONS 23

env. DocbookHt M (' manual . ht ', ' manual . xm ")
env. DocbookPdf (* manual . pdf ', ' manual . xm ")

to get both outputs from your XML source manual . xm . Asashortcut, you can give the stem of the filenames
alone, like this:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m (' nanual ')
env. DocbookPdf (' manual ')

and get the same result. Target and source lists are al so supported:

env = Environnent (t ool s=[' docbhook'])
env. DocbookHt m ([' manual . htm "' ,'reference. htm '], ['manual .xm ', 'reference.xm'])

or even

env = Environment (t ool s=[' docbook'])
env. DocbookHt m ([' manual ' ,' reference'])

I mportant

Whenever you leave out thelist of sources, you may not specify afile extension! The Tool usesthe given
names as file stems, and adds the suffixes for target and source files accordingly.

The rules given above are vaid for the Builders DocbookH m, DochookPdf, DocbookEpub,
DocbookSl i desPdf and DocbookXI ncl ude. For the DocbookMan transformation you can specify a
target name, but the actual output names are automatically set from the r ef nane entriesin your XML source.

TheBuildersDocbookHt ml Chunked, DocbookHt ml hel p andDocbookSl i desHt nl arespecia, inthat:

1. they create alarge set of files, where the exact names and their number depend on the content of the source
file, and

2. themaintarget isalwaysnamedi ndex. ht n , i.e. the output name for the XSL transformation is not picked
up by the styleshests.

As aresult, there is simply no use in specifying a target HTML name. So the basic syntax for these buildersis
aways:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m hel p(' manual ')

If you want to use a specific XSL file, you can set the additional xs| parameter to your Builder call asfollows:
env. DocbookHt m (' ot her. htm ', 'panual.xm ', xsl="htm .xsl")

Sincethismay get tediousif you always use the samelocal naming for your customized X SL files, e.g. ht m . xsl
for HTML and pdf . xsl| for PDF output, a set of variables for setting the default XSL name is provided. These
are:

DOCBOOK_DEFAULT_XSL_HTM.
DOCBOOK_DEFAULT_XSL_HTM.CHUNKED
DOCBOOK_DEFAULT_XSL_HTM_HELP
DOCBOOK_DEFAULT_XSL_PDF
DOCBOOK_DEFAULT_XSL_EPUB

Iy
=== SCONS 24

DOCBOOK_DEFAULT_XSL_MAN
DOCBOOK_DEFAULT_XSL_SLI DESPDF
DOCBOOK_DEFAULT_XSL_SLI DESHTM.

and you can set them when constructing your environment:

env = Environment (
t ool s=[' docbook'],
DOCBOOK_DEFAULT_XSL_HTM_=' ht ml . xsl ',
DOCBOOK_DEFAULT_XSL_PDF=" pdf . xsl ',

)

env. DocbookHt m (' manual ') # now uses html . xsl

Sets: $DOCBOOK_DEFAULT_XSL_EPUB, $DOCBOOK_DEFAULT_XSL_HTM.,
$DOCBOOK_DEFAULT_XSL_ HTM.CHUNKED, $DOCBOOK_DEFAULT_XSL_HTM_HELP,
$DOCBOOK_DEFAULT_XSL_MAN, $DOCBOOK_DEFAULT_XSL_ PDF,

$DOCBOOK_DEFAULT_XSL_SLI DESHTM., $DOCBOOK_DEFAULT_XSL_ SLI DESPDF, $DOCBOCOK_FOP,
$DOCBOOK_FOPCOM $DOCBOOK_FOPFLAGS, $DOCBOOK_XMLLI NT, $DOCBOOK_XM_LI NTCOM
$DOCBOOK_XM-LI NTFLAGS, $DOCBOOK_XSLTPRCC, $DOCBOOK_XSLTPROCCOM
$DOCBOOK_XSL TPROCFLAGS, $DOCBOOK_XSL TPROCPARANS.

Uses: $DOCBOOK_FOPCOVSTR, $DOCBOOK_XM_LI NTCOVSTR, $DOCBOOK_XSLTPROCCOVSTR.

dvi
Attaches the DVI builder to the construction environment.

dvipdf
Sets construction variables for the dvipdf utility.

Sets: $DVI PDF, $DVI PDFCOM $DVI PDFFLAGS.
Uses: $DVI PDFCOMBTR.

dvips
Sets construction variables for the dvips utility.

Sets: $DVI PS, $DVI PSFLAGS, $PSCOM $PSPREFI X, $PSSUFFI X.
Uses: $PSCOVBTR.

fo3
Set construction variables for generic POSIX Fortran 03 compilers.

Sets: $F03, $F03COM $FO3FLAGS, $FO3PPCOM $SHF03, $SHF03COM $SHFO3FLAGS, $SHFO3PPCOM
$_F03l NCFLAGS.

Uses: $FO3COMSTR, $FO3PPCOVETR, $FORTRANCOMVONFLAGS, $SHFO3COVSTR, $SHFO3PPCOVETR.

f08
Set construction variables for generic POSIX Fortran 08 compilers.

Sets: $F08, $FO8COM $FOBFLAGS, $F08PPCOM $SHF08, $SHF08COM $SHFO8FLAGS, $SHFO08PPCOM
$_F08I NCFLAGS.

Uses: $FO8COMBTR, $FO8PPCOVSTR, $FORTRANCOMVONFLAGS, $SHF08COVSTR, $SHFO8PPCOVSTR.

Iy
=== SCONS 25

f77
Set construction variables for generic POSIX Fortran 77 compilers.

Sets: $F77, $F77COM $F77FI LESUFFI XES, $F77FLAGS, $F77PPCOM $F77PPFI LESUFFI XES,
$FORTRAN, $FORTRANCOM $FORTRANFLAGS, $SHF77, $SHF77COM $SHF77FLAGS, $SHF77PPCOM
$SHFORTRAN, $SHFORTRANCOM $SHFORTRANFLAGS, $SHFORTRANPPCOM $_F771 NCFLAGS.

Uses: $F77COVSTR, $F77PPCOVETR, $FORTRANCOMMONFLAGS, $FORTRANCOVBTR,
$FORTRANFLAGS, $FORTRANPPCOMSTR, $SHF77COMBTR, $SHF77PPCOVBTR, $SHFORTRANCOVSTR,
$SHFORTRANFLAGS, $SHFORTRANPPCOVSTR.

f90
Set construction variables for generic POSIX Fortran 90 compilers.

Sets: $F90, $F90COM $FIOFLAGS, $FO0PPCOM $SHF90, $SHF90COM $SHFI0FLAGS, $SHF90PPCOM
$_F90!l NCFLAGS.

Uses: $F90COVSTR, $F90PPCOVETR, $FORTRANCOMVONFLAGS, $SHF90COVSTR, $SHF90PPCOVETR.

f95
Set construction variables for generic POSIX Fortran 95 compilers.

Sets: $F95, $F95C0OM $FI5FLAGS, $F95PPCOM $SHF95, $SHF95COM $SHF95FLAGS, $SHF95PPCOM
$_F95| NCFLAGS.

Uses: $F95COMSTR, $F95PPCOVSTR, $FORTRANCOMMONFLAGS, $SHF95COVBTR, $SHF95PPCOVETR.

fortran
Set construction variables for generic POSIX Fortran compilers.

Sets: $FORTRAN, $FORTRANCOM $FORTRANFLAGS, $SHFORTRAN, $SHFORTRANCOM
$SHFORTRANFLAGS, $SHFORTRANPPCOM

Uses: $CPPFLAGS, $FORTRANCOMVBTR, $FORTRANPPCOMVSTR, $SHFORTRANCOMSTR,
$SHFORTRANPPCOMSTR, $_ CPPDEFFLAGS.

g++
Set construction variables for the g++ C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXXFLAGS, $SHOBJ SUFFI X.

gr7
Set construction variables for the g77 Fortran compiler.

Sets: $F77, $F77COM $F77FI LESUFFI XES, $F77PPCOM $F77PPFI LESUFFI XES, $FORTRAN,
$FORTRANCOM $FORTRANPPCOM $SHF77, $SHF77COM $SHF77FLAGS, $SHF77PPCOM
$SHFORTRAN, $SHFORTRANCOM $SHFORTRANFLAGS, $SHFORTRANPPCOM

Uses: $F77FLAGS, $FORTRANCOMMONFLAGS, $FORTRANFLAGS.

gas
Sets construction variables for the gas assembler. Callsthe as tool.

Sets: $AS.

gce
Set construction variables for the gcc C compiler.

Iy
=== SCONS 26

gdc

Sets: $CC, $CCDEPFLAGS, $CCVERSI ON, $SHCCFLAGS.

Sets construction variables for the D language compiler GDC.

Sets. $DC, $DCOM $DDEBUG, $DDEBUGPREFI X, $DDEBUGSUFFI X, $DFI LESUFFI X,
$DFLAGPREFI X, $DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B,
$DLI BCOM $DLI BDI RPREFI X, $DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X,
$DLI BLI NKPREFI X, $DLI BLI NKSUFFI X, $DLINK, $DLI NKCOM $DLI NKFLAGPREFI X,
$DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH, $DRPATHPREFI X, $DRPATHSUFFI X, $DVERPREFI X,
$DVERSI ONS, $DVERSUFFI X, $SHDC, $SHDCOM $SHDLI BVERSI ONFLAGS, $SHDLI NK,
$SHDLI NKCOM $SHDLI NKFLAGS.

gettext

Thisisactually atoolset, which supports internationalization and localization of software being constructed with
SCons. The toolset loads following tools:

e xgettext -toextract internationalized messages from source code to POT file(s),
* nBQi nit - may beoptionally used to initialize POfiles,

» nsgner ge - to update POfiles, that already contain translated messages,

* nmegf nt - to compiletextual POfileto binary installable MOfile.

When you enable get t ext, it internaly loads all abovementioned tools, so you're encouraged to see their
individual documentation.

Each of the above tools provides its own builder(s) which may be used to perform particular activities related to
software internationalization. Y ou may be however interested in top-level Tr ansl at e builder.

Touseget t ext toolsadd' gett ext' tool to your environment:

env = Environnment(tools = ['default', 'gettext'])

gfortran

Sets construction variables for the GNU Fortran compiler. Callsthef or t r an Tool module to set variables.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFI0FLAGS, $SHF95,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

gnulink

gs

Set construction variables for GNU linker/loader.

Sets: $LDMODULEVERSI ONFLAGS, $RPATHPREFI X, $RPATHSUFFI X, $SHLI BVERSI ONFLAGS,
$SHLI NKFLAGS, $_LDMODULESONAME, $_SHLI BSONAME.

This Tool sets the required construction variables for working with the Ghostscript software. It also registers an
appropriate Action with the PDF Builder, such that the conversion from PS/EPS to PDF happens automatically
for the TeX/LaTeX toolchain. Finally, it adds an explicit Gs Builder for Ghostscript to the environment.

Sets: $GS, $GSCOM $GSFLAGS.

Uses: $GSCOMSTR.

~

'—‘—' SCONS 27

hpc++
Set construction variables for the compilers aCC on HP/UX systems.

hpcc
Set construction variables for aCC compilers on HP/UX systems. Calls the ¢ XX tool for additional variables.

Sets: $CXX, SCXXVERSI ON, $SHCXXFLAGS.

hplink
Sets construction variables for the linker on HP/UX systems.

Sets: $LI NKFLAGS, $SHLI BSUFFI X, $SHLI NKFLAGS.

icc
Sets construction variables for the icc compiler on OS/2 systems.

Sets: $CC, $CCCOM $CFI LESUFFI X, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXXCOM
$CXXFI LESUFRFI X, $I NCPREFI X, $I NCSUFFI X.

Uses: $CCFLAGS, $CFLAGS, $CPPFLAGS, $_CPPDEFFLAGS, $_CPPI NCFLAGS.

icl
Sets construction variables for the Intel C/C++ compiler. Calsthei nt el ¢ Tool module to set its variables.

ifl
Sets construction variables for the Intel Fortran compiler.

Sets: $FORTRAN, $FORTRANCOM $FORTRANPPCOM $SHFORTRANCOM $SHFORTRANPPCOM
Uses: $CPPFLAGS, $FORTRANFLAGS, $_CPPDEFFLAGS, $_FORTRANI NCFLAGS.

ifort
Sets construction variables for newer versions of the Intel Fortran compiler for Linux.

Sets: $F77, $F90, $F95, $FORTRAN, $SHF77, $SHF77FLAGS, $SHF90, $SHFIOFLAGS, $SHFI5,
$SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

ilink
Sets construction variables for theilink linker on OS/2 systems.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS.

ilink32
Sets construction variables for the Borland ilink32 linker.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS.

install
Sets construction variables for file and directory installation.

Sets: $1 NSTALL, $1 NSTALLSTR.

intelc
Sets construction variables for the Intel C/C++ compiler (Linux and Windows, version 7 and later). Callsthegcc
or nsvc (on Linux and Windows, respectively) tool to set underlying variables.

Iy
=== SCONS 28

jar

Sets: $AR, $CC, $CXX, $I NTEL_C_COWPI LER_VERSI ON, $LI NK.

Sets construction variables for the jar utility.
Sets: $JAR, $JARCOM $JARFLAGS, $JARSUFFI X.

Uses: $JARCOVBTR.

javac

Sets construction variables for the javac compiler.

Sets. $JAVABOOTCLASSPATH, $JAVAC, $JAVACCOM $JAVACFLAGS, $JAVACLASSPATH,
$IAVACLASSSUFFI X, $JAVAI NCLUDES, $J AVASOURCEPATH, $J AVASUFFI X.

Uses: $JAVACCOVSTR.

javah

Sets construction variables for the javah tool.
Sets: $JAVACLASSSUFFI X, $JAVAH, $J AVAHCOM $J AVAHFLAGS.

Uses: $JAVACLASSPATH, $JAVAHCOVSTR.

latex

Idc

link

Sets construction variables for the latex utility.
Sets: SLATEX, SLATEXCOM $LATEXFLAGS.

Uses: SLATEXCOMBTR.

Sets construction variables for the D language compiler LDC2.

Sets. $DC, $DCOM $DDEBUG, $DDEBUGPREFI X, $DDEBUGSUFFI X, $DFI LESUFFI X,
$DFLAGPREFI X, $DFLAGS, $DFLAGSUFFI X, $DI NCPREFI X, $DI NCSUFFI X, $DLI B,
$DLI BCOM $DLI BDI RPREFI X, $DLI BDI RSUFFI X, $DLI BFLAGPREFI X, $DLI BFLAGSUFFI X,
$DLI BLI NKPREFI X, $DLI BLI NKSUFFI X, $DLINK, $DLI NKCOM $DLI NKFLAGPREFI X,
$DLI NKFLAGS, $DLI NKFLAGSUFFI X, $DPATH, $DRPATHPREFI X, $DRPATHSUFFI X, $DVERPREFI X,
$DVERS| ONS, $DVERSUFFI X, $SHDC, $SHDCOM $SHDLI BVERSI ONFLAGS, $SHDLI NK,
$SHDLI NKCOM $SHDLI NKFLAGS.

Sets construction variables for the lex lexical analyser.

Sets: $LEX, SLEXCOM $LEXFLAGS, $LEXUNI STD.

Uses: $LEXCOVSTR, $LEXFLAGS, $LEX _HEADER FI LE, $LEX TABLES FI LE.

Sets construction variables for generic POSIX linkers. Thisis a"smart" linker tool which selects a compiler to
complete the linking based on the types of source files.

Setss $LDMODULE, $LDMODULECOM $LDMODULEFLAGS, $LDMODULENOVERSI ONSYMLI NKS,

$LDMODULEPREFI X, $LDMODULESUFFI X, $LDMODULEVERSI ON, $LDMODULEVERSI ONFLAGS,
$LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X, $LINK,

~

'—‘—' SCONS 29

$LI NKCOM $LI NKFLAGS, $SHLI BSUFFI X, $SHLINK, $SHLI NKCOM $SHLI NKFLAGS,
$__LDMODULEVERSI ONFLAGS, $__ SHLI BVERSI ONFLAGS.

Uses: $LDMODULECOVMSTR, $LI NKCOVSTR, $SHLI NKCOVSTR.

linkloc
Sets construction variables for the LinkLoc linker for the Phar Lap ETS embedded operating system.

Sets: $LI BDI RPREFI X, $L1 BDI RSUFFI X, $LI BLI NKPREFI X, $L1 BLI NKSUFFI X, $LI NK, $L1 NKCOM
$LI NKFLAGS, $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

Uses: $LI NKCOVSTR, $SHLI NKCOVSTR.

m4
Sets construction variables for the m4 macro processor.

Sets: $WH, $MVACOM $MAFLAGS.
Uses: SMACOVBTR.

masm
Sets construction variables for the Microsoft assembler.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $ASCOVETR, $ASPPCOMSTR, $CPPFLAGS, $_ CPPDEFFLAGS, $_CPPI NCFLAGS.

midl
Sets construction variables for the Microsoft IDL compiler.

Sets: $M DL, $M DLCOM $M DLFLAGS.

Uses: $M DLCOMSTR.

mingw
Sets construction variables for MinGW (Minimal Gnu on Windows).

Sets:. $AS, $CC, CXX, SLDMODULECOM $LI BPREFI X, $LI BSUFFI X, $OBJSUFFI X, $RC,
$RCCOM $RCFLAGS, $RCI NCFLAGS, $RCl NCPREFI X, $RCI NCSUFFI X, $SHCCFLAGS, $SHCXXFLAGS,
$SHLI NKCOM $SHLI NKFLAGS, $SHOBJ SUFFI X, $W NDONSDEFPREFI X, $W NDONSDEFSUFFI X.

Uses: $RCCOVSTR, $SHLI NKCOVSTR.

msgfmt
This scons tool is a part of scons get t ext toolset. It provides scons interface to msgfmt(1) command, which
generates binary message catalog (MO) from atextual trandation description (PO).

Sets: $MOSUFFI X, $MSGFMT, $MSGFMTCOM $MSGFMTCOMVBTR, $MSGFMTFLAGS, $POSUFFI X.
Uses: $L1 NGUAS_FI LE.
msginit
This scons tool is a part of scons get t ext toolset. It provides scons interface to msginit(1) program, which

creates new POfile, initializing the meta information with values from user's environment (or options).

Setss SMSANIT, $MSA NI TCOM $MSG NI TCOVSTR, $MSG NI TFLAGS, $POAUTO NIT,
$POCREATE_ALI AS, $POSUFFI X, $POTSUFFI X, $_MSG NI TLOCALE.

Iy
=== SCONS 30

Uses: $LI NGUAS_FI LE, $POAUTO NI T, $POTDOVAI N.

msgmer ge
Thissconstool isapart of sconsget t ext toolset. It provides sconsinterface to msgmer ge(1) command, which
merges two Uniform style . po filestogether.

Sets. $MSGVERGE, $MSGVERCGECOM $MSGVERGECOMBTR, $MSGVERGEFLAGS, $PCSUFFI X,
$POTSUFFI X, $POUPDATE_ALI AS.

Uses: $LI NGUAS_FI LE, $PCAUTO NI T, $POTDOVAI N.

mslib
Sets construction variables for the Microsoft mdlib library archiver.

Sets: $AR, $ARCOM $SARFLAGS, $L1 BPREFI X, $LI BSUFFI X.
Uses: SARCOVBTR.

mslink
Sets construction variables for the Microsoft linker.

Sets: $LDMODULE, $LDMODULECOM $LDMODULEFLAGS, $LDMODULEPREFI X, $LDMODULESUFFI X,
$LI BDI RPREFI X, $LI BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X, $LI NK, $LI NKCOM
$LI NKFLAGS, $REGSVR, $REGSVRCOM $REGSVRFLAGS, $SHLI NK, $SHLI NKCOM
$SHLI NKFLAGS, $W NDOWNSDEFPREFI X, $W NDOWSDEFSUFFI X, $W NDONSEXPPREFI X,
$W NDONSEXPSUFFI X, $W NDONSPROGVANI FESTPREFI X, $W NDOASPROGVANI FESTSUFFI X,
$W NDOWSSHLI BMANI FESTPREFI X, $W NDOWSSHLI BMANI FESTSUFFI X, $W NDOAS_| NSERT_DEF.

Uses: $LDMODULECOVSTR, $L1 NKCOVBTR, $REGSVRCOMSTR, $SHLI NKCOVSTR.

mssdk
Sets variables for Microsoft Platform SDK and/or Windows SDK. Note that unlike most other Tool modules,
mssdk does not set construction variables, but sets the environment variables in the environment SCons uses to
execute the Microsoft toolchain: 94 NCLUDEY, %41 B% %_1 BPATH%and %PATHY

Uses: $MBSDK_DI R, $MSSDK_VERSI ON, $MBVS_VERSI ON.

msvc
Sets construction variables for the Microsoft Visual C/C++ compiler.

Sets: $BUI LDERS, $CC, $CCCOM $CCDEPFLAGS, $CCFLAGS, $CCPCHFLAGS, $CCPDBFLAGS,
$CFI LESUFFI X, $CFLAGS, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM $CXXFI LESUFFI X,
$CXXFLAGS, $1 NCPREFI X, $I NCSUFFI X, $OBJPREFI X, $OBJSUFFI X, $PCHCOM $PCHPDBFLAGS,
$RC, $RCCOM $RCFLAGS, $SHCC, $SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM
$SHCXXFLAGS, $SHOBJPREF| X, $SHOBJ SUFFI X.

Uses. $CCCOMSTR, $CXXCOMSTR, $MSVC_NOTFOUND _POLI CY, $PCH, $PCHSTOP, $PDB,
$SHCCCOVBTR, $SHCXXCOVSTR.

msvs
Sets construction variables for Microsoft Visua Studio.

Sets: $MSVSBUI LDCOM $MSVSCLEANCOM $MSVSENCODI NG, $MSVSPRQIECTCOM
$MSVSREBUI LDCOM $MSVSSCONS, $MSVSSCONSCOM $MSVSSCONSCRI PT, $MSVSSCONSFLAGS,
$MBVSSOLUTI ONCOM

Iy
=== SCONS 31

mwcc
Sets construction variables for the Metrowerks CodeWarrior compiler.

Sets:. $CC, $CCCOM $CFI LESUFFI X, $CPPDEFPREFI X, $CPPDEFSUFFI X, $CXX, $CXXCOM
$CXXFI LESUFFI X, $I NCPREFI X, $I NCSUFFI X, $MACW VERSI ON, $MACW VERSI ONS, $SHCC,
$SHCCCOM $SHCCFLAGS, $SHCFLAGS, $SHCXX, $SHCXXCOM $SHCXXFLAGS.

Uses: $CCCOMBTR, $CXXCOMSTR, $SHCCCOVBTR, $SHCXXCOVETR.

mwld
Sets construction variables for the Metrowerks CodeWarrior linker.

Sets: $AR, $ARCOM $LI BDI RPREFI X, $LI1 BDI RSUFFI X, $LI BLI NKPREFI X, $LI BLI NKSUFFI X,
$SLINK, $LI NKCOM $SHLI NK, $SHLI NKCOM $SHLI NKFLAGS.

nasm
Sets construction variables for the nasm Netwide Assembler.

Sets: $AS, $ASCOM $ASFLAGS, $ASPPCOM $ASPPFLAGS.
Uses: $ASCOVETR, $ASPPCOVSTR.

ninja
Sets up the Ni nj a builder, which generates a ninja build file, and then optionally runs ninja.

Note

This is an experimental feature. This functionality is subject to change and/or removal without a
deprecation cycle.

Sets. $1 MPLI CI T_COMMAND DEPENDENCI ES, $NI NJA ALI AS NAME, $NI NJA_CMD_ARGS,

$NI NJA_COVPDB_EXPAND, $NI NJA DEPFI LE_PARSE_FORMAT, $NINJA DI R,
$NI NJA DI SABLE_AUTO RUN, $NI NJA_ ENV_VAR CACHE, $NI NJA FI LE_NAME,
$NI NJA_FORCE_SCONS_BUI LD, $NI NJA GENERATED SOURCE_ALI AS_NAME,
$NI NJA_GENERATED SOURCE_SUFFI XES, $NINJA MBVC DEPS PREFI X, $NI NJA POOL,
$NI NJA_REGENERATE_DEPS, $NI NJA_SCONS_DAEMON_KEEP_ALI VE,

$NI NJA_SCONS_DAEMON_PORT, $NI NJA SYNTAX, $_NI NJA_REGENERATE_DEPS_FUNC.

Uses: $AR, $ARCOM $ARFLAGS, $CC, $CCCOM $CCDEPFLAGS, $CCFLAGS, $CXX, $CXXCOM $ESCAPE,
$LI NK, $L1 NKCOM $PLATFORM $PRI NT_CVD_LI NE_FUNC, $PROGSUFFI X, $RANLI B, $RANLI BCOM
$SHCCCOM $SHCXXCOM $SHLI NK, $SHLI NKCOM

packaging
Sets construction variables for the Package Builder. If thistool isenabled, the - - package-t ype command-
line option is aso enabled.

pdf
Sets construction variables for the Portable Document Format builder.

Sets: $PDFPREF| X, $PDFSUFFI X.

pdflatex
Sets construction variables for the pdflatex utility.

Sets: SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS.

Iy
=== SCONS 32

Uses: $PDFLATEXCOMSTR.

pdftex

Sets construction variables for the pdftex utility.

Sets: SLATEXRETRI ES, $PDFLATEX, $PDFLATEXCOM $PDFLATEXFLAGS, $PDFTEX, $PDFTEXCOM
$PDFTEXFLAGS.

Uses: $PDFLATEXCOMSTR, $PDFTEXCOMSTR.

python

qt

L oads the Python source scanner into the invoking environment. When loaded, the scanner will attempt to find
implicit dependencies for any Python source files in the list of sources provided to an Action that uses this
environment.

Available since scons 4.0..

Sets construction variables for building Qt3 applications.

Note

This tool is only suitable for building targeted to Qt3, which is obsolete (the tool is deprecated since
4.3). There are contributed tools for Qt4 and Qt5, see https://github.com/SCons/scons-contrib [https://
github.com/SCong/scons-contrib]. Qt4 has also passed end of life for standard support (in Dec 2015).

Note paths for these construction variables are assembled using the os. pat h. j oi n method so they will have
the appropriate separator at runtime, but are listed here in the various entries only with the ' /' separator for
simplicity.

In addition, the construction variables $CPPPATH, $L1 BPATH and $L1 BS may be modified and the variables
$PROGEM TTER, $SHLI BEM TTER and $LI BEM TTER are modified. Because the build-performance is
affected when using this tool, you have to explicitly specify it at Environment creation:

Envi ronnent (tool s=["'default', ' qt'])
Theqt tool supports the following operations:

Automatic moc file generation from header files. Y ou do not have to specify moc files explicitly, the tool does
it for you. However, there are a few preconditions to do so: Your header file must have the same filebase as
your implementation file and must stay in the same directory. It must have one of the suffixes. h, . hpp, . H,
. hxx, . hh. You can turn off automatic moc file generation by setting $QT _ AUTOSCANto Fal se. Seeaso the
corresponding Moc Builder.

Automatic moc file generation from C++ files. As described in the Qt documentation, include the moc file
at the end of the C++ file. Note that you have to include the file, which is generated by the transformation
${ QI_MOCCXXPREFI X} <basenanme>${ QT _MOCCXXSUFFI X}, by default <basenane>. no. A warning
is generated after building the moc file if you do not include the correct file. If you are using Vari antDi r,
you may need to specify dupl i cat e=True. You can turn off automatic moc file generation by setting
$QT_AUTOSCANTto Fal se. See aso the corresponding Moc Builder.

Automatic handling of .ui files. The implementation files generated from . ui files are handled much the same
asyacc or lex files. Each .ui file given as a source of Pr ogr am Li br ary or Shar edLi br ar y will generate
threefiles: the declaration file, the implementation file and a moc file. Because there are also generated headers,
you may need to specify dupl i cat e=Tr ue incallstoVari ant Di r. Seeaso the corresponding Ui ¢ Builder.

~

'—‘—' SCONS 33

https://github.com/SCons/scons-contrib
https://github.com/SCons/scons-contrib
https://github.com/SCons/scons-contrib

Sets: $QTDI R, $QT_AUTOSCAN, $QT_BI NPATH, $QT_CPPPATH, $QT_LI B, $QT_LI BPATH, $QT_MOC,
$QT_MOCCXXPREFI X, $QT_MOCCXXSUFFI X, $QT_MOCFROMCXXCOM $QT_MOCFROVCXXFLAGS,
$QT_MOCFROVHCOM $QT_MOCFROVHFLAGS, $QT_MOCHPREFI X, $QT_MOCHSUFFI X,
$QT_UIC, $QT_UI CCOM $QT_ Ul CDECLFLAGS, $QT_ Ul CDECLPREFI X, $QT Ul CDECLSUFFI X,
$QT_UI Cl MPLFLAGS, $QT_Ul Cl MPLPREFI X, $QT_Ul Cl MPLSUFFI X, $QT_Ul SUFFI X.

Uses: $QTDI R

rmic
Sets construction variables for the rmic utility.

Sets: $JAVACLASSSUFFI X, $RM C, $RM CCOM $RM CFLAGS.
Uses: $RM CCOVSTR.

rpcgen
Sets construction variables for building with RPCGEN.

Sets: $RPCGEN, $RPCGENCLI ENTFLAGS, $RPCGENFLAGS, $RPCGENHEADERFLAGS,
$RPCGENSERVI CEFLAGS, $RPCGENXDRFLAGS.

sgiar
Sets construction variables for the SGI library archiver.

Sets: $AR, SARCOMBTR, $SARFLAGS, $LI BPREFI X, $L1 BSUFFI X, $SHLI NK, $SHLI NKFLAGS.
Uses: $ARCOVETR, $SHLI NKCOVSTR.

sgic++
Sets construction variables for the SGI C++ compiler.

Sets: $CXX, $CXXFLAGS, $SHCXX, $SHOBISUFFI X.

sgicc
Sets construction variables for the SGI C compiler.

Sets: $CXX, $SHOBI SUFFI X.

sgilink
Sets construction variables for the SGI linker.

Sets: $L1 NK, $RPATHPREFI X, $RPATHSUFFI X, $SHLI NKFLAGS.

sunar
Sets construction variables for the Sun library archiver.

Sets: $AR, $ARCOM $ARFLAGS, $L1 BPREFI X, $LI BSUFFI X.
Uses: SARCOVBTR.

sunc++
Sets construction variables for the Sun C++ compiler.

Sets: $CXX, $CXXVERSI ON, $SHCXX, $SHCXXFLAGS, $SHOBJPREF| X, $SHOBJ SUFFI X.

suncc
Sets construction variables for the Sun C compiler.

Iy
=== SCONS 34

Sets: $CXX, $SHCCFLAGS, $SHOBJI PREFI X, $SHOBJ SUFFI X.

sunf77
Set construction variables for the Sun f77 Fortran compiler.

Sets: $F77, $FORTRAN, $SHF77, $SHF77FLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf90
Set construction variables for the Sun f90 Fortran compiler.

Sets: $F90, $FORTRAN, $SHFI0, $SHFIOFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunf95
Set construction variables for the Sun f95 Fortran compiler.

Sets: $F95, $FORTRAN, $SHF95, $SHFISFLAGS, $SHFORTRAN, $SHFORTRANFLAGS.

sunlink
Sets construction variables for the Sun linker.

Sets: SRPATHPREFI X, $RPATHSUFFI X, $SHLI NKFLAGS.

swig
Sets construction variables for the SWIG interface compiler.
Sets: $SW G, $SW GCFI LESUFFI X, $SW GCOM $SW GCXXFI LESUFFI X, $SW GDI RECTORSUFFI X,
$SW GFLAGS, $SW A NCPREFI X, $SW G NCSUFFI X, $SW GPATH, $SW GVERSI ON,
$_SW A NCFLAGS.
Uses: $SW GCOVSTR.

tar
Sets construction variables for the tar archiver.

Sets: $TAR, $TARCOM $TARFLAGS, $TARSUFFI X.
Uses: $STARCOVETR.

tex
Sets construction variables for the TeX formatter and typesetter.

Sets: $BI BTEX, $BI BTEXCOM $Bl BTEXFLAGS, $LATEX, $LATEXCOM $LATEXFLAGS, $MAKEI NDEX,
$MAKEI NDEXCOM $MAKEI NDEXFLAGS, $TEX, $TEXCOM $TEXFLAGS.

Uses: $Bl BTEXCOVSTR, $LATEXCOVBTR, $MAKEI NDEXCOVSTR, $TEXCOVSTR.

textfile
Set construction variables for the Text f i | e and Subst fi | e builders.

Sets: $LI NESEPARATOR, $SUBSTFI LEPREFI X, $SUBSTFI LESUFFI X, $TEXTFI LEPREFI X,
$TEXTFI LESUFFI X.

Uses: $SUBST_DI CT.

tlib
Sets construction variables for the Borlan tib library archiver.

Iy
=== SCONS 35

Sets: $AR, $ARCOM $ARFLAGS, $L1 BPREFI X, $LI BSUFFI X.
Uses: SARCOVBTR.

xgettext
This scons tool is a part of scons get t ext toolset. It provides scons interface to xgettext(1) program, which
extracts internationalized messages from source code. The tool provides POTUpdat e builder to make PO
Template files.

Sets: $POTSUFFI X, $POTUPDATE_ALI AS, $XCETTEXTCOM $XCGETTEXTCOMBTR,
SXGETTEXTFLAGS, $XCGETTEXTFROM $XCETTEXTFROWPREFI X, $XCGETTEXTFROVBUFFI X,
SXGETTEXTPATH, $XGETTEXTPATHPREFI X, $XCETTEXTPATHSUFFI X, $_XGETTEXTDOWAI N,
$_XGETTEXTFROVFLAGS, $_XGETTEXTPATHFLAGS.

Uses: $POTDOVAI N.

yacc
Sets construction variables for the yacc parse generator.

Sets: $YACC, SYACCCOM $YACCFLAGS, $YACCHFI LESUFFI X, $YACCHXXFI LESUFFI X,
$YACCVCGHI LESUFFI X.

Uses: $YACCCOVSTR, $YACCFLAGS, $YACC_GRAPH_FI LE, $YACC_HEADER FI LE.

zip
Sets construction variables for the zip archiver.

Sets: $ZI1 P, $ZI PCOM $ZI PCOMPRESSI ON, $ZI PFLAGS, $ZI PSUFFI X.

Uses: $ZI PCOVBTR.

Builder Methods

You tell SCons what to build by calling Builders, functions which take particular action(s) to produce target(s) of a
particular type (conventionally hinted at by the builder name, e.g. Pr ogr an) from the specified sourcefiles. A builder
call is a declaration: SCons enters the specified relationship into its internal dependency node graph, and only later
makes the decision on whether anything is actually built, since this depends on command-line options, target selection
rules, and whether the target(s) are out of date with respect to the sources.

SCons provides a number of builders, and you can also write your own (see Builder Objects). Builders are created
dynamically at run-time, often (though not always) by tools which determine whether the external dependencies for
the builder are satisfied, and which perform the necessary setup (see Tools). Builders are attached to a construction
environment as methods. The available builder methods are registered as key-value pairsin the $BUI LDERS attribute
of the construction environment, so the avail able builders can be examined. Thisexample displaysthem for debugging
purposes:

env = Environnent ()
print("Builders:", list(env['BU LDERS']))

Builder methods take two required arguments: t ar get and sour ce. Thet ar get and sour ce arguments can be
specified either aspositional arguments, inwhich caset ar get comesfirst, or askeyword arguments, usingt ar get =
and sour ce=. Although both arguments are nominally required, if there is a single source and the target can be
inferred thet ar get argument can be omitted (see below). Builder methods al so take avariety of keyword arguments,
described below.

Iy
=== SCONS 36

Because long lists of file names can lead to alot of quoting in abuilder call, SCons suppliesaSpl i t global function
and a same-named environment method that splitsasingle string into a list, using strings of white-space characters as
the delimiter (similar to the Python string spl i t method, but succeeds even if the input isn't astring).

The following are equivalent examples of caling the Pr ogr ambuilder method:

env. Program('bar', ["bar.c', 'foo.c'])

env. Program(' bar', Split('bar.c foo.c'))

env. Progran(' bar', env.Split('bar.c foo.c'))

env. Progran{source=["'bar.c', 'foo.c'], target="bar')

env. Program(target="bar', source=Split('bar.c foo.c'))
env. Program(target ="' bar', source=env.Split('bar.c foo.c'))
env. Program(' bar', source='bar.c foo.c'.split())

Sources and targets can be specified asascalar or asalist, composed of either strings or nodes (more on nodes below).
When specifying path strings, Python follows the POSIX pathname convention: if a string begins with the operating
system pathname separator (on Windows both the slash and backslash separator are accepted, and any leading drive
specifier isignored for the determination) it is considered an absolute path, otherwise it is arelative path. If the path
string contains no separator characters, it is searched for as a file in the current directory. If it contains separator
characters, the search follows down from the starting point, which is the top of the directory tree for an absolute path
and the current directory for arelative path. The "current directory” in this context is the directory of the SConscript
file currently being processed.

SCons also recognizes a third way to specify path strings: if the string begins with the # character it is top-relative -
it works like a relative path but the search follows down from the directory containing the top-level SConst r uct
rather than from the current directory. The # can optionally be followed by a pathname separator, which isignored if
found in that position. Top-relative paths only work in places where scons will interpret the path (see some examples
below). To be used in other contexts the string will need to be converted to arelative or absolute path first.

Examples:

The conments describing the targets that will be built
assune these calls are in a SConscript file in the
a subdirectory named "subdir".

Builds the program "subdir/foo" from "subdir/foo.c":
env. Program(' foo', 'foo.c')

Builds the program"/tnp/bar” from "subdir/bar.c":
env. Program(' /tnp/bar', 'bar.c')

An initial '# or '#/' are equivalent; the foll ow ng

calls build the prograns "foo" and "bar" (in the

top-1evel SConstruct directory) from "subdir/foo.c" and
"subdir/bar.c", respectively:

env. Program(' #foo', 'foo.c')

env. Program(' #/ bar', 'bar.c')

Builds the program "ot her/foo" (relative to the top-I|evel
SConstruct directory) from "subdir/foo.c":
env. Progran(' #ot her/foo', 'foo.c')

This will not work, only SCons interfaces understand '#',

Iy
=== SCONS 37

os.path.exists is pure Python:
if os.path.exists('#inc/foo.h'):
env. Append(CPPPATH=' #i nc')

When the target shares the same base name as the source and only the suffix varies, and if the builder method has a
suffix defined for the target file type, then the target argument may be omitted completely, and scons will deduce the
target file name from the source file name. The following examples all build the executable program bar (on POSIX
systems) or bar.exe (on Windows systems) from the bar . ¢ sourcefile:

env. Program(target ="' bar', source='bar.c')
env. Program(' bar', source='bar.c')

env. Program(source="bar.c')

env. Progran(' bar.c')

Theoptiona sr cdi r keyword argument specifiesthat all sourcefile stringsthat are not absolute paths or top-relative
paths shall be interpreted relative to the specified sr cdi r . The following example will build the bui | d/ pr og (or
bui | d/ pr og. exe on Windows) program from thefilessrc/f1. candsrc/f 2. c:

env. Program(' build/prog', ['fl.c', 'f2.¢c'], srcdir="src')

The optional par se_f | ags keyword argument causes behavior similar to theenv. Mer geFl ags method, where
the argument value is broken into individual settings and merged into the appropriate construction variables.

env. Program(' hell o', "hello.c', parse flags='-1include -DEBUG -1 n)
This example adds 'include' to the $CPPPATH construction variable, 'EBUG' to $CPPDEFI NES, and 'm' to $LI BS.

The optional chdi r keyword argument specifies that the Builder's action(s) should be executed after changing
directory. If the chdi r argument is a path string or a directory Node, scons will change to the specified directory. If
thechdi r isnot astring or Node and evaluates true, then scons will change to the target file's directory.

Warning

Python only keeps one current directory location even if there are multiple threads. This means that use of
the chdi r argument will not work with the SCons - j option, because individua worker threads spawned
by SConsinterfere with each other when they start changing directory.

scons will change to the "sub" subdirectory
before executing the "cp" command.
env. Comand(
target="sub/dir/foo.out',
sour ce='sub/dir/foo.in",
action="cp dir/foo.in dir/foo.out",
chdir="sub',

)

Because chdir is not a string, scons will change to the

target's directory ("sub/dir") before executing the

"cp" command.

env. Command(' sub/dir/foo.out', 'sub/dir/foo.in', "cp foo.in foo.out", chdir=True)

Note that SCons will not automatically modify its expansion of construction variables like $STARGET and $SOURCE
when using the chdi r keyword argument--that is, the expanded file names will still be relative to the top-level

Iy
=== SCONS 38

directory where the SConst r uct was found, and consequently incorrect relative to the chdir directory. If you use
the chdi r keyword argument, you will typically need to supply a different command line using expansions like
${ TARGET. fi | e} and ${ SOURCE. fi | e} to usejust the filename portion of the target and source.

Keyword arguments that are not specifically recognized are treated as construction variable overrides, which replace
or add those variables on alimited basis. These overrideswill only bein effect when building the target of the builder
call, and will not affect other parts of the build. For example, if you want to specify some libraries needed by just
one program:

env. Program(' hello', "hello.c', LIBS=['gl"', "glut'])

or generate a shared library with a non-standard suffix:

env. Shar edLi brar y(
target="word",
sour ce="'word. cpp',
SHLI BSUFFI X=' . ocx' ,
LI BSUFFI XES=[" . ocx'],

)

Note that both the $SHLI BSUFFI X and $LI BSUFFI XES construction variables must be set if you want scons to
search automatically for dependencies on the non-standard library names; see the descriptions of these variables for
more information.

Although the builder methods defined by scons are, in fact, methods of a construction environment object, many may
also be called without an explicit environment:

Program(' hell o', '"hello.c'")
Shar edLi brary(' word', 'word.cpp')

If called this way, the builder will internally use the Default Environment that consists of the tools and values that
scons has determined are appropriate for the local system.

Builder methods that can be called without an explicit environment (indicated in the listing of builders bel ow without
aleading env.) may be called from custom Python modules that you import into an SConscript file by adding the
following to the Python module;

from SCons. Scri pt inport *

A builder may add additional targets beyond those requested if an attached Emitter chooses to do so (see the section
called “Builder Objects’ for more information. $PROGEM TTER s an example). For example, the GNU linker takes
acommand-line argument - Map=mapf i | e, which causesit to produce alinker map filein addition to the executable
file actually being linked. If the Pr ogr ambuilder's emitter is configured to add this mapfile if the option is set, then
two targets will be returned when you only provided for one.

For this reason, builder methods always return aNodeLi st , alist-like object whose elements are Nodes. Nodes are
the interna representation of build targets or sources (see the section called “Node Objects’ for more information).
The returned NodeLi st object can be passed to other builder methods as source(s) or to other SCons functions or
methods where a path string would normally be accepted.

For example, to add a specific preprocessor define when compiling one specific object file but not the others:

Iy
=== SCONS 39

bar _obj list = env. StaticCbject('bar.c', CPPDEFI NES=' - DBAR)
env. Program("prog", ['foo.c', bar_obj list, "main.c'])

Using a Node as in this example makes for a more portable build by avoiding having to specify a platform-specific
object suffix when calling the Pr ogr ambuilder method.

TheNodelLi st objectisalsoconvenient to passtotheDef aul t function, for the samereason of avoiding aplatform-
specific name:

tgt = env.Progran("prog", ["foo.c", "bar.c", "main.c"])
Defaul t (tgt)

Builder calls will automatically "flatten” lists passed as source and target, so they are free to contain elements which
arethemselveslists, suchasbar _obj | i st returned by the St at i cQhj ect cal. If you need to manipulate alist
of listsreturned by builders directly in Python code, you can either build anew list by hand:

foo = oject('foo.c')
bar = nject(' bar.c')
objects = ['begin.o'] + foo + ["middle.o'] + bar + ['end.o']
for obj in objects:
print(str(obj))

Or you can use the FI at t en function supplied by SCons to create a list containing just the Nodes, which may be
more convenient:

foo = oject('foo.c')
bar = nject(' bar.c')
objects = Flatten([' begin.o', foo, 'mddle.o', bar, 'end.o'])
for obj in objects:
print(str(obj))

Since builder callsreturn alist-like object, not an actual Python list, it isnot appropriate to use the Python add operator
(+ or +=) to append builder results to a Python list. Because the list and the object are different types, Python will not
updatetheoriginal listin place, but will instead createanew NodeLi st object containing the concatenation of thelist
elements and the builder results. Thiswill cause problemsfor any other Python variablesin your SCons configuration
that still hold on to areference to the original list. Instead, use the Python list ext end method to make sure the list
is updated in-place. Example:

object _files =[]

Do NOT use += here:

object files += bject('bar.c')

#

1t will not update the object files list in place.
#

Instead, use the |list extend nethod:

object _files.extend(Object(' bar.c'))

The path name for a Node's file may be used by passing the Node to Python's builtin st r function:

Iy
=== SCONS 40

bar _obj list = env. StaticCbject('bar.c', CPPDEFI NES=' - DBAR)
print("The path to bar_obj is:", str(bar_obj list[0]))

Note that because the Builder call returns a Nodeli st, you have to access the first element in the list
(bar _obj _l'i st 0] intheexample) to get at the Node that actually represents the object file.

When trying to handle errorsthat may occur in abuilder method, consider that the corresponding Actionisexecuted at a
different timethan the SConscript fil e statement calling the builder. It isnot useful towrap abuilder call inat r y block,
since success in the builder call is not the same as the builder itself succeeding. If necessary, aBuilder's Action should
be coded to exit with a useful exception message indicating the problem in the SConscript files - programmatically
recovering from build errorsis rarely useful.

The following builder methods are predefined in the SCons core software distribution. Depending on the setup of a
particular construction environment and on the type and software installation status of the underlying system, not all
builders may be available in that construction environment. Since the function calling signature is the same for all
builders:

Bui | der name(target, source, [key=val, ...])
it isomitted in thislisting for brevity.

CFile()

env.CFi |l e()
Builds a C source file given alex (. 1) or yacc (. y) input file. The suffix specified by the $CFI LESUFFI X
construction variable (. ¢ by default) is automatically added to the target if it is not already present. Example:

builds foo.c
env.CFile(target = 'foo.c', source = 'foo.l")
builds bar.c

env. CFi | e(t arget

bar', source = 'bar.y')

Command()

env.Conmand()
The Command "Builder" is actually a function that looks like a Builder, but takes a required third argument,
which is the action to take to construct the target from the source, used for "one-off" builds where a full builder
is not needed. Thus it does not follow the builder calling rules described at the start of this section. See instead
the Conmrand function description for the calling syntax and details.

Conpi | at i onDat abase()

env.Conpi | ati onDat abase()
Conpi | at i onDat abase is a specia builder which adds a target to create a JSON formatted
compilation database compatible with cl ang tooling (see the LLVM specification [https://clang.llvm.org/docy
JSONCompilationDatabase.html]). This database is suitable for consumption by various tools and editors who
can use it to obtain build and dependency information which otherwise would be internal to SCons. The
builder does not require any source files to be specified, rather it arranges to emit information about all of the
C, C++ and assembler source/output pairs identified in the build that are not excluded by the optional filter
$COVPI LATI ONDB_PATH_FI LTER. Thetarget is subject to the usual SCons target selection rules.

If called with no arguments, the builder will default to atarget name of conpi | e_commands. j son.
If called with asingle positional argument, sconswill "deduce" the target name from that source argument, giving

it the same name, and then ignore the source. Thisisthe usual way to call the builder if a non-default target name
iswanted.

Iy
=== SCONS 41

https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html
https://clang.llvm.org/docs/JSONCompilationDatabase.html

If called with either the t ar get = or sour ce= keyword arguments, the value of the argument is taken as the
target name. If called with both, the t ar get = value is used and sour ce= isignored. If called with multiple
sources, the sourcelist will beignored, sincethereisno way to deduce what the intent was; in this case the default
target name will be used.

Note

You must load the conpi | ati on_db tool prior to specifying any part of your build or some source/
output fileswill not show up in the compilation database.

Available since scons 4.0.

CXXFi | e()

env.CXXFi | e()
Builds a C++ source file given a lex (. 11) or yacc (.yy) input file. The suffix specified by the
$CXXFI LESUFFI X construction variable (. cc by default) isautomatically added to the target if it isnot already
present. Example:

builds foo.cc

env. CXXFi | e(target = 'foo.cc', source = 'foo.ll")
builds bar.cc
env. CXXFi |l e(target = 'bar', source = 'bar.yy')

DocbookEpub()
env.DocbookEpub()
A pseudo-Builder, providing a Docbook toolchain for EPUB output.

env = Environnent (t ool s=[' dochook'])
env. DocbookEpub(' manual . epub', ' manual . xm ")

or simply

env = Environnent (tool s=[' dochook'])
env. DocbookEpub(' nmanual ')

DocbookHt m ()
env.DocbookHt i ()
A pseudo-Builder, providing a Docbook toolchain for HTML output.

env = Environnent (t ool s=["' dochook'])
env. DocbookHt M (' manual . htd ', ' manual . xm ")

or simply

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m (' manual ')

DocbookHt m Chunked()

env.DocbookHt m Chunked()
A pseudo-Builder providing a Docbook toolchain for chunked HTML output. It supports the base. di r
parameter. Thechunkf ast . xsl file (requires"EXSLT") is used as the default stylesheet. Basic syntax:

env = Environment (t ool s=[' docbook'])
env. DocbookHt m Chunked(' manual ')

Iy
=== SCONS 42

wheremanual . xm istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (tool s=[' dochook'])
env. DocbookHt m Chunked(' mymanual . html ', 'manual ', xsl='"htnl chunk. xsl")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m Chunked(' manual ', xsl ="htm chunk. xsl', base dir="output/")

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookHt m hel p()
env.DochbookHt m hel p()
A pseudo-Builder, providing a Docbook toolchain for HTMLHELP output. Its basic syntax is:

env = Environnent (t ool s=[' dochook'])
env. DocbookHt m hel p(' manual ')

where manual . xm istheinput file.

If youusetheroot. fil ename parameter in your own stylesheets you have to specify the new target name.
This ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environment (t ool s=[' docbhook'])
env. DocbookHt m hel p(* mymanual . ht ', ' manual ', xsl='htnl hel p. xsl ')

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environnent (tool s=[' dochook'])
env. DocbookHt m hel p(' manual *, xsl =" html hel p. xsl', base_dir="output/")

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookMan()
env.DocbookMan()
A pseudo-Builder, providing a Docbook toolchain for Man page output. Its basic syntax is:

env = Environnent (t ool s=[' dochook'])
env. DocbookMan(' manual ')

where manual . xm istheinput file. Note, that you can specify atarget name, but the actual output names are
automatically set from ther ef name entriesin your XML source.

DochbookPdf ()
env.DocbhookPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF output.

env = Environnent (t ool s=[' dochook'])
env. DocbookPdf (' manual . pdf', ' manual . xm ")

or simply

Iy
=== SCONS 43

env = Environment (t ool s=[' docbook'])
env. DocbookPdf (* manual ')

DocbookSl i desH m ()
env.DocbookSl i desHt m ()
A pseudo-Builder, providing a Docbook toolchain for HTML slides output.

env = Environnent (tool s=[' dochook'])
env. DocbookSl i desHt ml (' nanual ')

If youusethetit| ef oil. htm parameter inyour own stylesheetsyou haveto give the new target name. This
ensures that the dependencies get correct, especially for the cleanup via“scons -c”:

env = Environnent (t ool s=["' dochook'])
env. DocbookSl i desHt m (' mymanual . html ', ' manual ', xsl='"slideshtm .xsl")

Some basic support for the base. di r parameter is provided. You can add the base_di r keyword to your
Builder call, and the given prefix gets prepended to all the created filenames:

env = Environnent (t ool s=[' dochook'])
xsl =

env. DocbookSl i desHt m (' manual ', "slideshtm .xsl', base dir="output/')

Make sure that you don't forget the trailing slash for the base folder, else your files get renamed only!

DocbookSl i desPdf ()
env.DocbookSl i desPdf ()
A pseudo-Builder, providing a Docbook toolchain for PDF dlides output.

env = Environment (t ool s=[' docbhook'])
env. DocbookSl i desPdf (' manual . pdf', 'manual . xm ')

or simply

env = Environment (t ool s=[' docbhook'])
env. DocbookSl i desPdf (' nanual ')

DocbookXI ncl ude()
env.DocbookXI ncl ude()
A pseudo-Builder, for resolving XIncludesin a separate processing step.

env = Environnent (t ool s=["' dochook'])
env. DocbookXl ncl ude(' manual _xi ncl uded. xm ', ' manual . xm ")

DochookXsl t ()
env.DocbookXsl t ()
A pseudo-Builder, applying agiven XSL transformation to the input file.

env = Environnent (t ool s=[' dochook'])
env. DocbookXsl t (' manual _transformed. xm ', 'manual .xm ', xsl="transformxslt')

Note, that this builder requiresthe xs| parameter to be set.

DVI ()

env.DVI ()
Buildsa. dvi filefroma. tex,.|txor. | atexinputfile. If thesourcefilesuffixis. t ex, sconswill examine
the contents of the file; if the string \ docunent ¢l ass or \ docunent st yl e is found, the file is assumed

Iy
=== SCONS 44

to beaLaTeX file and the target is built by invoking the $LATEXCOMcommand line; otherwise, the $TEXCOM
command line is used. If the file is a LaTeX file, the DVI builder method will also examine the contents of
the . aux file and invoke the $BI BTEX command line if the string bi bdat a is found, start $MAKEI NDEX to
generate an index if a. i nd fileisfound and will examine the contents . | og file and re-run the SLATEXCOM
command if thelog file saysit is necessary.

The suffix . dvi (hard-coded within TeX itself) is automatically added to the target if it is not already present.
Examples:

builds from aaa.tex

env.DVI (target = 'aaa.dvi', source = 'aaa.tex')

bui |l ds bbb. dvi

env. DVI (target = 'bbb', source = 'bbb.ltx")

builds fromccc. | atex

env. DVI (target = 'ccc.dvi', source = 'ccc.latex')
Gs()
env.Gs()

A Builder for explicitly calling the gs executable. Depending on the underlying OS, the different names gs, gsos2
and gswin32c are tried.

env = Environment (tool s=['gs'])
env. Gs(

‘cover.jpg',

' scons-scons. pdf ',

GSFLAGS=" - dNOPAUSE - dBATCH - sDEVI CE=j peg -dFi rst Page=1 -dLast Page=1 -q',
)

Install ()

env.nstall ()
Installs one or more source files or directoriesin the specified target, which must be a directory. The names of the
specified source files or directories remain the same within the destination directory. The sources may be given
as astring or as anode returned by a builder.

env.Install (target='"/usr/local/bin, source=['foo', 'bar'])

Note that if target paths chosen for the Install builder (and the related I nstall As and
I nst al | Ver si onedLi b builders) are outside the project tree, such as in the example above, they may not be
selected for "building" by default, sincein the absence of other instructions scons buildstargetsthat are underneath
the top directory (the directory that containsthe SConst r uct file, usually the current directory). Use command
line targets or the Def aul t function in this case.

Ifthe- - i nst al | - sandbox command lineoptionisgiven, thetarget directory will be prefixed by the directory
path specified. Thisisuseful to test installs without installing to a"live" location in the system.

SeedsoFi ndl nst al | edFi | es. For morethoughtsoninstallation, seethe User Guide (particul arly the section
on Command-Line Targets and the chapters on Installing Files and on Alias Targets).

I nstall As()

env. nstal |l As()
Installs one or more source files or directories to specific names, allowing changing afile or directory name as
part of theinstallation. It isan error if the target and source arguments list different numbers of files or directories.

Iy
=== SCONS 45

env.Install As(target="/usr/l| ocal /bin/foo',
sour ce='f oo_debug')

env.Install As(target=['../lib/libfoo.a, "../lib/libbar.a'],
source=['libFOO a', 'libBAR a'])

Seethenoteunder | nst al | .

I nst al | Ver si onedLi b()

env.l nst al | Ver si onedLi b()
Installs a versioned shared library. The symlinks appropriate to the architecture will be generated based on
symlinks of the source library.

env. I nst al | Ver si onedLi b(target="'/usr/|ocal/bin/foo'
source='1libxyz.1.5.2.s0")

Seethenoteunder | nst al | .

Jar ()

env.Jar ()
Builds a Java archive (. j ar) file from the specified list of sources. Any directories in the source list will be
searched for . cl ass files). Any . j ava filesin the source list will be compiledto . cl ass filesby calling the
Java Builder.

If the $JARCHDI R value is set, the jar command will change to the specified directory using the - C option. If
$JARCHDI Ris not set explicitly, SCons will use the top of any subdirectory tree in which Java. cl ass were
built by the Java Builder.

If the contents any of the source files begin with the string Mani f est - Ver si on, thefile is assumed to be a
manifest and is passed to the jar command with the moption set.

env. Jar(target = 'foo.jar', source = 'classes')
env. Jar(target = 'bar.jar',
source = ['barl.java', 'bar2.java'])
Java()
env.Java()

Builds one or more Java class files. The sources may be any combination of explicit . j ava files, or directory
trees which will be scanned for . j ava files.

SConswill parse each source. j ava fileto find the classes (including inner classes) defined within that file, and
from that figure out the target . cl ass files that will be created. The class files will be placed underneath the
specified target directory.

SConswill also search each Javafilefor the Java package name, which it assumes can befound on aline beginning
with the string package in the first column; the resulting . cl ass fileswill be placed in a directory reflecting
the specified package name. For example, thefile Foo. j ava defining asingle public Foo class and containing
apackage name of sub. di r will generate acorresponding sub/ di r/ Foo. cl ass classfile.

Examples:

env. Java(target = 'classes', source = 'src')

Iy
=== SCONS 46

'cl asses', source
'cl asses', source

env. Java(t ar get
env. Java(t ar get

['srcl', 'src2'])
["Filel.java', 'File2.java'])

Java source files can use the native encoding for the underlying OS. Since SCons compilesin simple ASCII mode
by default, the compiler will generate warnings about unmappabl e characters, which may lead to errors asthefile
is processed further. In this case, the user must specify the LANG environment variable to tell the compiler what
encoding is used. For portibility, it's best if the encoding is hard-coded so that the compile will work if it is done
on a system with a different encoding.

env = Environnent ()
env['ENV']['LANG] = 'en_GB. UTF-8'

JavaH()

env.JavaH()
Builds C header and source files for implementing Java native methods. The target can be either a directory in
which the header files will be written, or a header file name which will contain all of the definitions. The source
can be the names of . cl ass files, the names of . j ava files to be compiled into . cl ass files by calling the
Java builder method, or the objects returned from the Java builder method.

If the construction variable $J AVACLASSDI Risset, either inthe environment or in the call tothe JavaH builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

Examples:
builds java_native.h
cl asses = env.Java(target="classdir", source="src")

env. JavaH(t arget ="j ava_native. h", source=cl asses)

buil ds incl ude/ package_foo. h and i ncl ude/ package_bar. h
env. JavaH(t arget ="i ncl ude", source=["package/foo.cl ass", "package/bar.class"])

buil ds export/foo.h and export/bar.h

env. JavaH(
target ="export",
sour ce=["cl asses/ f oo. cl ass", "classes/bar.class"],

JAVACLASSDI R="cl| asses",

Note

Java versions starting with 10.0 no longer use the javah command for generating JNI headers/
sources, and indeed have removed the command entirely (see Java Enhancement Proposa JEP
313 [https.openjdk.java.net/jeps/313]), making this tool harder to use for that purpose. SCons may
autodiscover a javah belonging to an older release if there are multiple Java versions on the system,
which will lead to incorrect results. To use with anewer Java, override the default values of $J AVAH (to
contain the path to thejavac) and $J AVAHFLAGS (to contain at least a- h flag) and note that generating
headers with javac requires supplying source . j ava filesonly, not. cl ass files.

Li brary()
env.Li brary()
A synonym for the St at i cLi br ary builder method.

Iy
=== SCONS 47

https:openjdk.java.net/jeps/313
https:openjdk.java.net/jeps/313
https:openjdk.java.net/jeps/313

Loadabl eModul e()

env.Loadabl eModul e()
Onmost systems, thisisthesameasShar edLi br ar y. OnMac OS X (Darwin) platforms, this createsaloadable
module bundle.

MA()

env.M4()
Builds an output file from an M4 input file. This uses a default $MAFLAGS value of - E, which considers al
warnings to be fatal and stops on the first warning when using the GNU version of m4. Example:

env. Mi(target = 'foo.c', source = 'foo.c.md')

Moc()

env.Moc()
Builds an output file from a moc input file. moc input files are either header files or C++ files. This builder is
only available after using the tool gt . Seethe $QTDI R variable for more information. Example:

env. Moc(' foo. h') # generates noc_foo.cc
env. Moc(' foo.cpp') # generates foo.noc
MOFi | es()
env.MOFi | es()
This builder belongsto msgf nt tool. The builder compiles POfilesto MOfiles.
Example 1. Create pl . no and en. no by compiling pl . po and en. po:
...
env. MOFiles(['pl', "en'])
Example 2. Compile files for languages defined in LI NGUAS file:
...
env. MOFi | es(LI NGUAS_FI LE = 1)
Example 3. Create pl . no and en. no by compiling pl . po and en. po plus files for languages defined in
LI NGUAS file:
...
env. MOFiles(['pl', "en'], LINGUAS FILE = 1)

Example 4. Compile files for languages defined in L1 NGUAS file (another version):

...
env[' LINGUAS FILE'] = 1
env. MOFi | es()

MSVSPr oj ect ()
env.M5VSPr oj ect ()
Builds a Microsoft Visual Studio project file, and by default builds a solution file as well.

Iy
=== SCONS 48

Thisbuilds aVisual Studio project file, based on the version of Visual Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSI ON in the Environment constructor). For Visua
Studio 6, it will generatea. dsp file. For Visual Studio 7, 8, and 9, it will generatea. vcpr oj file. For Visual
Studio 10 and later, it will generatea. vexpr oj file.

By defaullt, this also generates a solution file for the specified project, a. dswfilefor Visual Studio6ora. sl n
file for Visual Studio 7 and later. This behavior may be disabled by specifying aut o_bui | d_sol uti on=0
when you call MSVSPr oj ect , in which case you presumably want to build the solution file(s) by calling the
MBVSSol ut i on Builder (see below).

The MBVSPr oj ect builder takes several lists of filenames to be placed into the project file. These are currently
limitedtosrcs,incs,| ocal i ncs, resour ces, andni sc. These are pretty self-explanatory, but it should
be noted that these lists are added to the $SOURCES construction variable as strings, NOT as SCons File Nodes.
This is because they represent file names to be added to the project file, not the source files used to build the
project file.

The above filename lists are all optional, although at |east one must be specified for the resulting project file to
be non-empty.

In addition to the above lists of values, the following values may be specified:

target
The name of the target . dsp or . vcproj file. The correct suffix for the version of Visua Studio must
be used, but the $MSVSPRQJECTSUFFI X construction variable will be defined to the correct value (see
example below).

variant
The name of this particular variant. For Visual Studio 7 projects, this can also be a list of variant names.
These aretypically thingslike "Debug" or "Release”, but really can be anything you want. For Visual Studio
7 projects, they may also specify a target platform separated from the variant name by a| (vertical pipe)
character: Debug| Xbox. The default target platform is Win32. Multiple calls to MSVSPr oj ect with
different variants are allowed; all variants will be added to the project file with their appropriate build targets
and sources.

cmdargs
Additional command line arguments for the different variants. The number of cndar gs entries must match
the number of var i ant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants.

cppdefines
Preprocessor definitions for the different variants. The number of cppdef i nes entries must match the
number of vari ant entries, or be empty (not specified). If you give only one, it will automatically be
propagated to all variants. If you don't give this parameter, SCons will use the invoking environment's
CPPDEFI NES entry for all variants.

cppflags
Compiler flags for the different variants. If a/std:c++ flag is found then /Zc:__cplusplus is appended to the
flagsif not already found, this ensures that intellisense uses the /std:c++ switch. The number of cppf | ags
entries must match the number of var i ant entries, or be empty (not specified). If you give only one, it will
automatically be propagated to all variants. If you don't give this parameter, SConswill combine theinvoking
environment's CCFLAGS, CXXFLAGS, CPPFLAGS entries for all variants.

cpppaths
Compiler include paths for the different variants. The number of cpppat hs entries must match the number
of vari ant entries, or be empty (not specified). If you give only one, it will automatically be propagated

Iy
=== SCONS 49

to al variants. If you don't give this parameter, SCons will use the invoking environment's CPPPATH entry
for all variants.

buildtar get
An optiona string, node, or list of strings or nodes (one per build variant), to tell the Visual Studio debugger
what output target to usein what build variant. The number of bui | dt ar get entriesmust match the number
of vari ant entries.

runfile
The name of the file that Visual Studio 7 and later will run and debug. This appears as the value of the
Qut put field in the resulting Visua Studio project file. If this is not specified, the default is the same as
the specified bui | dt ar get value.

Note that because SCons always executesits build commands from the directory in which the SConst r uct file
islocated, if you generate aproject filein adifferent directory than the SConst r uct directory, userswill not be
able to double-click on the file name in compilation error messages displayed in the Visual Studio console output
window. This can be remedied by adding the Visual C/C++ / FC compiler option to the $CCFLAGS variable so
that the compiler will print the full path name of any files that cause compilation errors.

Example usage:

barsrcs = [' bar.cpp']

barincs = ['bar.h']

barl ocalincs = [' StdAfx. h']
barresources = ['bar.rc','resource. h']
barmi sc = [' bar_readne. txt"']

dll = env. SharedLi brary(target="bar.dl ",
sour ce=bar srcs)

buildtarget = [s for s in dll if str(s).endswith('dlIl")]
env. MSVSPr oj ect (target="Bar' + env[' MSVSPROJECTSUFFI X],

srcs=bar srcs,

i ncs=bari ncs,

| ocal i ncs=bar | ocal i ncs,

resour ces=barr esour ces,

m sc=barni sc,

bui | dt ar get =bui | dt ar get ,

vari ant =' Rel ease')

Starting with version 2.4 of SConsit is also possible to specify the optional argument DebugSet t i ngs, which
creates files for debugging under Visual Studio:

DebugSettings
A dictionary of debug settings that get written to the . vcproj . user or the .vcxproj. user
file, depending on the version installed. As it is done for cmdargs (see above), you can specify a
DebugSet t i ngs dictionary per variant. If you give only one, it will be propagated to all variants.

Currently, only Visua Studio v9.0 and Visual Studio version v11 are implemented, for other versions no fileis
generated. To generate the user file, you just need to add aDebugSet t i ngs dictionary to the environment with
the right parameters for your MSV S version. If the dictionary is empty, or does not contain any good value, no
file will be generated.

Following is a more contrived example, involving the setup of a project for variants and DebugSettings:

Iy
=== SCONS 50

Assum ng you store your defaults in a file
vars = Vari abl es(' vari abl es. py')
msvcver = vars.args.get('vc', '9')

Check command args to force one M crosoft Visual Studio version

if msvcver == "'9' or nsvcver == "11':
env = Environment (MSVC_VERSI ON=nsvcver +' . 0', MSVC BATCH=Fal se)
el se:

env = Environmnent ()

AddOption('--userfile', action="store_ true', dest="userfile', default=False,
hel p="Create Visual Studio Project user file")

#
1. Configure your Debug Setting dictionary with options you want in the I|ist
of allowed options, for instance if you want to create a user file to |l aunch
a specific application for testing your dll with Mcrosoft Visual Studio 2008 (v9):
#
V9DebugSetti ngs = {
" Command' : ' c:\\ nyapp\\using\\thisdll.exe',
"WorkingDirectory': "c:\\nyapp\\using\\",
' CommandAr gunents': ' -p password',
"Attach':'false',
Debugger Type' : ' 3",
'"Renote':' 1",
' Renot eMachi ne' : None,
' Renot eConmand’ : None,
HtpUrl®': None,
PDBPat h' : None,
SQLDebuggi ng' : None,
Environnent': '',
Envi ronnent Merge' : " true',
Debugger Fl avor' : None,
VPl RunConmand' : None,
MPI RunAr gunment s' : None,
MPI RunWor ki ngDi rectory' : None,
Appl i cati onCommand’ : None,
Appl i cati onArgunments': None,
' Shi nConmand' : None,
MPI Accept Mbde' : None,
MPlI Accept Filter': None,

SR H H HH H HHH H HHHHHH R R

2. Because there are a lot of different options depending on the M crosoft
Vi sual Studio version, if you use nore than one version you have to
define a dictionary per version, for instance if you want to create a user
file to launch a specific application for testing your dll with M crosoft
Vi sual Studio 2012 (v11):

H HOHHH HH

V10DebugSetti ngs = {
' Local Debugger Command' : ' c:\\ myapp\\using\\thisdlIl.exe",
' Local Debugger Wor ki ngDirectory': 'c:\\nyapp\\using\\",

Iy
=== SCONS 51

'LocalDebuggeernnandArgunents '-p password',
LocalEEbuggerEnV|ronnent None,
Debugger Fl avor' 'VVndomsLocaIEEbuggeF
LocaIDebuggerAttach': None,

Local Debugger Debugger Type' : None,

Local Debugger Mer geEnvi ronment ' : None,
Local Debugger SQLDebuggi ng' : None,

Renot eDebugger Command’ : None,

Renot eDebugger CommandAr gunent s’ : None,
Renot eDebugger Wor ki ngDi rectory' : None,
Renot eDebugger Ser ver Nane' : None,

Renot eDebugger Connecti on' : None,

Renot eDebugger Debugger Type' : None,
Renot eDebugger Att ach' : None,

Renot eDebugger SQLDebuggi ng' : None,

Depl oynment Di rectory' : None

Addi tional Fil es': None,

Renot eDebugger Depl oyDebugCppRunti me' : None,
' WebBr owser Debugger Ht t pUr | ' : None,

' WebBr owser Debugger Debugger Type' : None,
" WebSer vi ceDebugger Ht t pUrl ' : None,

" WebSer vi ceDebugger Debugger Type' : None,
" WebSer vi ceDebugger SQLDebuggi ng' : None,

SO H H HH O HH HH HHHHEHH R HHHHH

3. Select the dictionary you want dependi ng on the version of visua
Files you want to generate

TR H W R

if not env.GetOption('userfile'):
dbgSetti ngs = None

elif env.get(' MSVC VERSION , None) == '9.0':
dbgSetti ngs = V9DebugSetti ngs

elif env.get(' MSVC VERSION , None) == '11.0":
dbgSetti ngs = V10DebugSetti ngs

el se:

dbgSetti ngs = None

#

4. Add the dictionary to the DebugSettings keyword.
#

barsrcs = ['bar.cpp', 'dllmin.cpp’, 'stdafx.cpp']

barincs = ['targetver.h']

barl ocal i ncs = [' St dAf x. h']
barresources = ['bar.rc','resource. h']
barm sc = [' ReadMe. t xt ']

dl I = env. SharedLi brary(target="bar.dlI
sour ce=bar srcs)

env. M5VSPr oj ect (target ="' Bar' + env[' MSVSPRQIECTSUFFI X],
srcs=barsrcs,
i ncs=bari ncs,
| ocal i ncs=bar | ocal i ncs,

St udi o

“I

SCONS

52

resour ces=barresour ces,

m sc=barm sc,

bui l dtarget=[dlII[0]] * 2,

vari ant =(' Debug| Wn32', ' Rel ease| Wn32'),
cndar gs='vc=%' % nsvcver,

DebugSetti ngs=(dbgSettings, {}))

MBVSSol ut i on()

env

Ni n
env

.M5VSSol uti on()
Builds a Microsoft Visual Studio solution file.

ThisbuildsaVisual Studio solution file, based on the version of Visual Studio that is configured (either the latest
installed version, or the version specified by $MSVS_VERSI ON in the construction environment). For Visual
Studio 6, it will generatea. dswfile. For Visual Studio 7 (.NET), it will generatea. sl n file.

The following values must be specified:

target
The name of the target .dsw or .sin file. The correct suffix for the version of Visual Studio must be used, but
the value $MSVSSCOLUTI ONSUFFI X will be defined to the correct value (see example below).

variant
The name of this particular variant, or a list of variant names (the latter is only supported for MSVS 7
solutions). These are typically things like "Debug" or "Release”, but really can be anything you want. For
MSVS 7 they may also specify target platform, like this "Debug|Xbox". Default platform is Win32.

projects
A list of project file names, or Project nodes returned by calls to the MSVSPr oj ect Builder, to be placed
into the solution file. It should be noted that these file names are NOT added to the $SOURCES environment
variable in form of files, but rather as strings. This is because they represent file names to be added to the
solution file, not the source files used to build the solution file.

Example Usage:

env. M5VSSol ut i on(
target="Bar" + env[" MSVSSCLUTI ONSUFFI X"],
projects=["bar" + env["MSVSPRQIECTSUFFI X"]],
vari ant =" Rel ease",

ja()

.Ni nj a()

A specia builder which adds a target to create a Ninja build file. The builder does not require any source files
to be specified.

Note

Thisis an experimental feature. To enable it you must use one of the following methods

On the conmand |ine
- -experi ment al =ni nj a

~

'—‘-‘ SCONS 53

O in your SConstruct
Set Option(' experinental', 'ninja')

This functionality is subject to change and/or removal without deprecation cycle.

To use this tool you need to install the Python ninja package, as the tool by default depends on being
abletodoani nport of the package This can be done via:

python -mpip install ninja

If called with no arguments, the builder will default to atarget name of ni nj a. bui | d.

If called with asingle positional argument, sconswill "deduce" the target name from that source argument, giving
it the same name, and then ignore the source. Thisisthe usual way to call the builder if a non-default target name
is wanted.

If called with either the t ar get = or sour ce= keyword arguments, the value of the argument is taken as the
target name. If called with both, the t ar get = value is used and sour ce= isignored. If called with multiple
sources, the sourcelist will beignored, sincethereisno way to deduce what the intent was; in this case the default
target name will be used.

Available since scons 4.2.

hj ect ()
env.vj ect ()
A synonym for the St at i cObj ect builder method.

Package()

env.Package()
Builds software distribution packages. A package is a container format which includes files to install along with
metadata. Packaging is optional, and must be enabled by specifying the packagi ng tool. For example:

env = Environment (tool s=['default', 'packaging'])

SCons can build packages in a number of well known packaging formats. The target package type may be
selected with the the $PACKAGET YPE construction variable or the - - package-t ype command line option.
The package type may be a list, in which case SCons will attempt to build packages for each type in the list.
Example:

env. Package(PACKAGETYPE=["'src_zip', 'src_targz'], ...other args...)

The currently supported packagers are:

nsi Microsoft Installer package

rpm RPM Package Manger package

i pkg Itsy Package Management package
tarbz2 bzip2-compressed tar file

targz gzip-compressed tar file

tarxz xz-compressed tar file

Iy
=== SCONS 54

zip zip file

src_tarbz2 bzip2-compressed tar file suitable as source to another
packager

src_targz gzip-compressed tar file suitable as source to another
packager

src_tarxz xz-compressed tar file suitable as source to another
packager

src_zip zip file suitable as source to another packager

The file list to include in the package may be specified with the sour ce keyword argument. If omitted,
the Fi ndl nst al | edFi | es function is called behind the scenes to select al files that have an | nst al |,
Install As orlnstall Versi onedLi b Builder attached. If thet ar get keyword argument is omitted, the
target name(s) will be deduced from the package type(s).

The metadata comes partly from attributes of the filesto be packaged, and partly from packaging tags. Tags can be
passed as keyword arguments to the Package builder call, and may a so be attached to files (or more accurately,
Nodes representing files) with the Tag function. Some package-level tags are mandatory, and will lead to errors
if omitted. The mandatory tags vary depending on the package type.

While packaging, the builder uses a temporary location named by the value of the $PACKAGERCOOT variable -
the package sources are copied there before packaging.

Packaging example:

env = Environment (tool s=["default", "packaging"])
env.Install ("/bin/", "ny_programnt')
env. Package(

NAME="f 00",

VERSI ON="1. 2. 3",

PACKAGEVERSI ON=0,

PACKAGETYPE="r pnt',

LI CENSE="gpl ",

SUMVARY="Dbal al al al al ",

DESCRI PTI ON="t hi s should be really really | ong",
X _RPM GROUP="Appl i cati on/fu",

SOURCE URL="https://foo.org/foo-1.2.3.tar.gz",

)

Inthisexample, thetarget/ bi n/ my_pr ogr amcreated by thel nst al | call would not be built by default since
it is not under the project top directory. However, since no sour ce is specified to the Package builder, it is
selected for packaging by the default sources rule. Since packaging is done using $PACKAGEROOCT, no write is
actually done to the system's/ bi n directory, and the target will be selected since after rebasing to underneath
$PACKAGERCQCT it is now under the top directory of the project.

PCH()

env.PCH()
Builds a Microsoft Visual C++ precompiled header. Calling this builder returns alist of two targets: the PCH as
the first element, and the object file as the second element. Normally the object file is ignored. This builder is
only provided when Microsoft Visual C++ is being used as the compiler. The PCH builder is generally used in
conjunction with the $PCH construction variable to force object files to use the precompiled header:

env[' PCH] = env. PCH(" St dAf x. cpp')[0]

Iy
=== SCONS 55

PDF()

env.PDF()
Buildsa. pdf filefroma. dvi input file (or, by extension, a. tex, . | t x, or. | at ex input file). The suffix
specified by the $PDFSUFFI X construction variable (. pdf by default) is added automatically to the target if it
isnot already present. Example;

builds from aaa.tex

env. PDF(target = 'aaa.pdf', source = 'aaa.tex')
bui |l ds bbb. pdf from bbb. dvi

env. PDF(target = 'bbb', source = 'bbb.dvi')

PO ni t ()

env.PA nit ()
This builder belongs to nsgi ni t tool. The builder initializes missing PO file(s) if $POAUTO NI T is set. If
$POAUTA NI Tisnot set (default), PA ni t printsinstruction for user (that is supposed to be atranslator), telling
how the POfile should beinitialized. In normal projectsyou should not use POl ni t and use POUpdat e instead.
PQUpdat e chooses intelligently between msgmer ge(1) and msginit(1). PO ni t aways uses msginit(1) and
should be regarded as builder for special purposes or for temporary use (e.g. for quick, one time initialization of
abunch of POfiles) or for tests.

Target nodesdefined through PAl ni t arenot built by default (they'rel gnor edfrom' . ' node) but are added to
special Al i as (' po-creat e' by default). The alias name may be changed through the SPOCREATE_ALI AS
construction variable. All POfiles defined through POl ni t may be easily initialized by scons po-cr eate.

Example 1. Initializeen. po and pl . po from messages. pot :

...
env.POnit(['en'", "pl']) # nessages.pot --> [en.po, pl.po]

Example 2. Initializeen. po and pl . po fromf 0o. pot :

...
env.POnit(['en", "pl"], ['foo']) # foo.pot --> [en.po, pl.po]

Example 3. Initializeen. po and pl . po fromf 00. pot but using $POTDOMAI N construction variable:

...

env.POnit(['en', "pl'], POTDOVAI N='foo') # foo.pot --> [en.po, pl.po]
Example 4. Initialize POfiles for languages defined in L1 NGUAS file. The files will be initialized from template

messages. pot :

...
env. PO ni t (LI NGUAS_FI LE = 1) # needs 'LINGUAS file

Example5. Initidlizeen. po andpl . pl POfilesplusfilesfor languages defined in LI NGUAS file. Thefileswill
beinitialized from template messages. pot :

o
env.POnit(['en', 'pl'], LINGUAS FILE = 1)

Iy
=== SCONS 56

Example 6. Y ou may preconfigure your environment first, and then initialize POfiles:

...

env[' POAUTONT] =1
env['LINGUAS FILE'] =1
env[' POTDOVAIN] = 'foo'
env. PO nit ()

which has same efect as:

...
env. PO nit(POAUTON T = 1, LINGUAS FILE = 1, POTDOVAIN = 'fo0')

Post Scri pt ()
env.Post Scri pt ()
Buildsa. ps filefrom a. dvi input file (or, by extension, a. tex, . | t x, or . | at ex input file). The suffix

specified by the $PSSUFFI X construction variable (. ps by default) is added automatically to the target if it is
not already present. Example:

builds from aaa.tex

env. Post Script(target = 'aaa.ps', source = 'aaa.tex')
bui |l ds bbb. ps from bbb. dvi
env. Post Scri pt(target = 'bbb', source = 'bbb.dvi")

POTUpdat e()

env.POTUpdat e()
The builder belongsto xget t ext tool. The builder updates target POT file if exists or creates oneif it doesn't.
The node is not built by default (i.e. itis| gnor edfrom' . "), but only on demand (i.e. when given POT fileis
required or when special aias isinvoked). This builder adds its targe node (messages. pot , say) to a specia
alias (pot - updat e by default, see $POTUPDATE_ALI AS) so you can update/create them easily with scons

pot-update. The file is not written until there is no real change in internationalized messages (or in comments
that enter POT file).

Note

You may see xgettext(1l) being invoked by the xgett ext tool even if there is no real change in
internationalized messages (so the POT fileis not being updated). This happens every time a source file
has changed. In such case we invoke xgettext(1) and compare its output with the content of POT file to
decide whether the file should be updated or not.

Example 1. Let's create po/ directory and place following SConst r uct script there:

SConstruct in 'po/' subdir

env = Environment(tools = ['default', 'xgettext'])
env. POTUpdate(['foo'], ['../a.cpp', '../b.cpp'])
env. POTUpdate(["bar'], ['../c.cpp', "'../d.cpp'])

Then invoke scons few times:

user @ost:$ scons # Does not create foo.pot nor bar. pot
user @ost: $ scons foo. pot # Updates or creates foo. pot

Iy
=== SCONS 57

user @ost:$ scons pot-update # Updates or creates foo.pot and bar. pot
user @ost:$ scons -c # Does not cl ean foo.pot nor bar. pot.

the results shall be as the comments above say.

Example 2. The POTUpdat e builder may be used with no target specified, in which case default target
nessages. pot will be used. The default target may also be overridden by setting $POTDOVAI N construction
variable or providing it as an override to POTUpdat e builder:

SConstruct script

env = Environnent(tools = ['default', 'xgettext'])

env[' POTDOMAIN'] = "foo"

env. POTUpdat e(source = ["a.cpp", "b.cpp"]) # Creates foo.pot

env. POTUpdat e(POTDOVAI N = "bar", source = ["c.cpp", "d.cpp"]) # and bar. pot

Example 3. The sources may be specified within separate file, for example POTFI LES. i n:

POTFILES.in in 'po/' subdirectory
..la.cpp

../b.cpp

end of file

The name of the file (POTFI LES. i n) containing the list of sourcesis provided via $XGETTEXTFROM

SConstruct file in 'po/' subdirectory
env = Environment(tools = ["default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n')

Example 4. Y ou may use $XGETTEXTPATH to define source search path. Assume, for example, that you have
filesa. cpp,b. cpp,po/ SConst ruct ,po/ POTFI LES. i n. Thenyour POT-related files could | ook asbel ow:

POTFILES.in in 'po/' subdirectory
a.cpp

b. cpp
end of file

SConstruct file in 'po/' subdirectory
env = Environnent(tools = ['default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XCGETTEXTPATH='../"')

Example 5. Multiple search directories may be defined within a list, i.e. XGETTEXTPATH = ['dir1l",

"dir2', ...].Theorderinthelist determinesthe search order of sourcefiles. The path to thefirst file found
is used.

Let'screate 0/ 1/ po/ SConst r uct script:

SConstruct file in '0/1/po/' subdirectory
env = Environnent(tools = ['default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XGETTEXTPATH=['../', '../../"'])

and 0/ 1/ po/ POTFI LES. i n:

Iy
=== SCONS 58

POTFILES.in in '0/1/po/' subdirectory

a.cpp
end of file

Writetwo * . cpp files, thefirst oneis0/ a. cpp:

/* 0/a.cpp */
gettext("Hello from../../a.cpp")

and the second is0/ 1/ a. cpp:

/[* 0/ 1/ a.cpp */
gettext("Hello from../a.cpp")

thenrunscons. You'll obtain 0/ 1/ po/ messages. pot withthemessage" Hel 1 o from../a. cpp".When
you reverse order in $XGETTEXTFQOM i.e. when you write SConscript as

SConstruct file in '0/1/po/' subdirectory
env = Environment(tools = ["default', 'xgettext'])
env. POTUpdat e(XGETTEXTFROM = ' POTFI LES. i n', XCGETTEXTPATH=['../../', '../"'])

thenthenessages. pot will containnsgid "Hello from../../a.cpp" lineandnotnmsgi d "Hel | o
from../a.cpp".

PQUpdat e()

env.PQUpdat e()
The builder belongs to nsgmrer ge tool. The builder updates PO files with msgmer ge(1), or initializes missing
POfiles as described in documentation of nsgi ni t tool and PO ni t builder (see also $POAUTA NI T). Note,
that POUpdat e does not add itstargetsto po- cr eat e aliasas POl ni t does.

Target nodes defined through POUpdat e are not built by default (they're | gnor ed from' . ' node). Instead,
they are added automatically to specia Al i as (' po- updat e' by default). The alias name may be changed
through the SPOUPDATE_AL| AS construction variable. Y ou can easily update POfilesin your project by scons
po-update.

Example 1. Updateen. po and pl . po fromnessages. pot template (see also $POTDOVAI N), assuming that
the later one exists or thereisrule to build it (see POTUpdat e):

...
env. POQUpdate(['en','pl']) # nessages.pot --> [en.po, pl.po]

Example 2. Updateen. po and pl . po fromf 0o. pot template:
...
env. POUpdate(['en', 'pl'], ['foo']) # foo.pot --> [en.po, pl.pl]

Example 3. Updateen. po and pl . po fromf 00. pot (another version):

...

Iy
=== SCONS 59

env. POUpdate(['en', 'pl'], POIDOVAIN='foo') # foo.pot -- > [en.po, pl.pl]

Example 4. Update files for languages defined in LI NGUAS file. The files are updated from nessages. pot
template:

...
env. POUpdat e(LI NGQUAS FILE = 1) # needs 'LINGUAS' file

Example 5. Same as above, but update from f 00. pot template:

...
env. POUpdat e(LI NGQUAS FILE = 1, source = ['fo0'])

Example 6. Update en. po and pl . po plusfiles for languages defined in LI NGUAS file. The files are updated
fromnessages. pot template:

produce 'en.po', 'pl.po" + files defined in 'LINGUAS :
env. POUpdate(['en', 'pl"'], LINGUAS FILE = 1)

Example 7. Use SPOAUTA NI T to automatically initialize POfile if it doesn't exist:

o
env. POUpdat e(LI NGUAS FILE = 1, POAUTOINIT = 1)

Example 8. Update PO files for languages defined in LI NGUAS file. The files are updated from f 0o. pot
template. All necessary settings are pre-configured via environment.

...

env[' POAUTONIT'] =1
env[' LINGUAS FILE'] =1
env[' POTDOMAIN'] = 'foo'
env. POUpdat e()

Progr am()
env.Pr ogr am)

Builds an executable given one or more object files or C, C++, D, or Fortran source files. If any C, C++, D or
Fortran source files are specified, then they will be automatically compiled to object files using the Cbj ect

builder method; see that builder method's description for a list of legal source file suffixes and how they are
interpreted. The target executable file prefix, specified by the $PROGPREFI X construction variable (nothing
by default), and suffix, specified by the $PROGSUFFI X construction variable (by default, . exe on Windows
systems, nothing on POSIX systems), are automatically added to the target if not already present. Example:

env. Program(target='foo', source=['foo0.0', 'bar.c', 'baz.f'])

Pr ogramAl | At Once()
env.ProgramAl | At Once()
Builds an executable from D sources without first creating individual objects for each file.

D sources can be compiled file-by-file as C and C++ source are, and D is integrated into the scons Object and
Program builders for this model of build. D codes can though do whole source meta-programming (some of the

Iy
=== SCONS 60

testing frameworks do this). For this it is imperative that all sources are compiled and linked in asingle call to
the D compiler. This builder serves that purpose.

env. ProgramAl | At Once(' executable', ["mod_a.d, nod b.d', 'nod c.d'])

This command will compile the modules mod_a, mod_b, and mod_c in asingle compilation process without first
creating object files for the modules. Some of the D compilers will create executable.o others will not.

RES()

env.RES()
Builds a Microsoft Visual C++ resource file. This builder method is only provided when Microsoft Visual C++
or MinGW is being used as the compiler. The. r es (or . o for MinGW) suffix is added to the target name if no
other suffix is given. The sourcefile is scanned for implicit dependencies as though it were a C file. Example:

env. RES(' resource.rc')

RM C()

env.RM C()
Builds stub and skeleton class files for remote objects from Java. cl ass files. The target is adirectory relative
to which the stub and skeleton class files will be written. The source can be the names of . cl ass files, or the
objects return from the Java builder method.

If the construction variable $J AVACLASSDI Ris set, either in the environment or in the call to the RM C builder
method itself, then the value of the variable will be stripped from the beginning of any . cl ass file names.

cl asses = env.Java(target = 'classdir', source = 'src')
env. RM C(target = 'outdirl', source = classes)
env. RM C(target = 'outdir2',
source = [' package/foo.class', 'package/bar.class'])
env. RM C(target = 'outdir3',
source = ['classes/foo.class', 'classes/bar.class'],

JAVACLASSDI R = ' cl asses')

RPCGendl i ent ()

env.RPCGendl i ent ()
Generates an RPC client stub (_cl nt . ¢) filefrom a specified RPC (. x) source file. Because rpcgen only builds
output filesin the local directory, the command will be executed in the sourcefile's directory by default.

Builds src/rpcif_clnt.c
env. RPCGenCl i ent (' src/rpcif.x")

RPCGenHeader ()

env.RPCGenHeader ()
Generates an RPC header (. h) filefrom aspecified RPC (. x) sourcefile. Because rpcgen only builds output files
in the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif.h
env. RPCGenHeader (' src/rpcif.x")

Iy
=== SCONS 61

RPCGenSer vi ce()

env.RPCGenSer vi ce()
Generates an RPC server-skeleton (_svc. c¢) file from a specified RPC (. x) source file. Because rpcgen only
builds output filesin the local directory, the command will be executed in the source file€'s directory by default.

Builds src/rpcif_svc.c
env. RPCGenCl i ent (' src/rpcif.x")

RPCGenXDR()

env.RPCGenXDR()
Generatesan RPC XDR routine (_xdr . ¢) filefrom aspecified RPC (. x) sourcefile. Because rpcgen only builds
output filesin the local directory, the command will be executed in the source file's directory by default.

Builds src/rpcif_xdr.c
env. RPCGenCl i ent (" src/rpcif.x")

Shar edLi brary()

env.Shar edLi brary()
Builds ashared library (. so on aPOSIX system, . dI | on Windows) given one or more object filesor C, C++,
D or Fortran source files. If any source files are given, then they will be automatically compiled to object files.
Thetarget library file prefix, specified by the $SHLI BPREFI X construction variable (by default, | i b on POSIX
systems, nothing on Windows systems), and suffix, specified by the $SHLI BSUFFI X construction variable (by
default, . dl I on Windows systems, . so on POSIX systems), are automatically added to the target if not already
present. Example:

env. Shar edLi brary(target="bar', source=['bar.c', 'foo.0'])

On Windows systems, the Shar edLi br ary builder method will always build an import library (. | i b) in
addition to the shared library (. dl |), adding a. | i b library with the same basename if there is not aready a
. I'i b fileexplicitly listed in the targets.

On Cygwin systems, the Shar edLi br ar y builder method will always build an import library (. dl | . @) in
addition to the shared library (. dl |), adding a. dl | . a library with the same basename if there is not already
a.dl | . afileexplicitly listed in the targets.

Any object fileslisted inthesour ce must have been built for ashared library (that is, usingthe Shar edChj ect
builder method). sconswill raise an error if thereis any mismatch.

On some platforms, thereis a distinction between a shared library (loaded automatically by the system to resolve
external references) and a loadable module (explicitly loaded by user action). For maximum portability, use the
Loadabl eModul e builder for the latter.

When the $SHLI BVERSI ON construction variableisdefined, aversioned shared library is created. Thismodifies
$SHLI NKFLAGS as required, adds the version number to the library name, and creates any symbolic links that
are needed.

env. Shar edLi brary(target='bar', source=['bar.c', 'foo.0'], SHLIBVERSI ON='1.5.2")

On a POSIX system, versions with a single token create exactly one symlink: | i bbar . so. 6 would have
symlink | i bbar . so only. On aPOSIX system, versions with two or more tokens create exactly two symlinks:
I i bbar. so. 2. 3. 1 would have symlinks| i bbar . so and | i bbar . so. 2; on aDarwin (OSX) system the
library would bel i bbar. 2. 3. 1. dyl i b and thelink would bel i bbar . dyl i b.

Iy
=== SCONS 62

On Windows systems, specifying r egi st er =1 will cause the . dl | to be registered after it is built. The
command that is run is determined by the $REGSVR construction variable (regsvr 32 by default), and the flags
passed are determined by $REGSVRFLAGS. By default, SREGSVRFLAGS includes the / s option, to prevent
dialogs from popping up and requiring user attention when it is run. If you change $REGSVRFLAGS, be sure to
includethe/ s option. For example,

env. Shar edLi brary(target =" bar', source=['bar.cxx', 'foo.obj'], register=1)
will register bar . dl | asa COM object when it is done linking it.

Shar edObj ect ()

env.Shar edhj ect ()
Builds an object file intended for inclusion in a shared library. Source files must have one of the same set of
extensions specified abovefor the St at i cCbj ect builder method. On some platforms building a shared object
requires additional compiler option (e.g. - f PI Cfor gcc) in addition to those needed to build a normal (static)
object, but on some platformsthere is no difference between a shared object and anormal (static) one. When there
is a difference, SCons will only allow shared objects to be linked into a shared library, and will use a different
suffix for shared objects. On platforms where there is no difference, SCons will allow both normal (static) and
shared objectsto belinked into ashared library, and will use the same suffix for shared and normal (static) objects.
The target object file prefix, specified by the $SHOBJPREFI X construction variable (by default, the same as
$OBJIPREFI X), and suffix, specified by the $SHOBJ SUFFI X construction variable, are automatically added to
the target if not already present. Examples:

env. Shar edObj ect (t arget =" ddd', source='ddd.c')
env. Shar edObj ect (t arget =' eee. o', source=' eee. cpp')
env. SharedObj ect (target="fff.obj', source="fff.for")

Note that the source fileswill be scanned according to the suffix mappingsinthe Sour ceFi | eScanner object.
See the manpage section " Scanner Objects’ for more information.

StaticLi brary()

env.StaticLi brary()
Builds a static library given one or more object files or C, C++, D or Fortran source files. If any source files
are given, then they will be automatically compiled to object files. The static library file prefix, specified by
the $L1 BPREFI X construction variable (by default, | i b on POSIX systems, nothing on Windows systems),
and suffix, specified by the $LI BSUFFI X construction variable (by default, . | i b on Windows systems, . a on
POSIX systems), are automatically added to the target if not already present. Example:

env. StaticLi brary(target="bar', source=['bar.c', 'foo.0'])

Any object fileslisted in the sour ce must have been built for astatic library (that is, usingthe St at i cChj ect
builder method). sconswill raise an error if thereis any mismatch.

StaticObject ()

env.Stati chj ect ()
Builds a static object file from one or more C, C++, D, or Fortran source files. Source files must have one of
the following extensions:

.asm assenbly | anguage file
. ASM assenbly | anguage file
. C Cfile

Iy
=== SCONS 63

Sub
env

.C Wndows: Cfile
PCSI X: C++ file

. CC C++ file

. cpp C++ file

. CXX C++ file

. CXX C++ file

. C++ C++ file

. C++ C++ file

.d Dfile

f Fortran file

F W ndows: Fortran file

PCSI X: Fortran file + C pre-processor
for Fortran file
. FOR Fortran file
.fpp Fortran file + C pre-processor
FPP Fortran file + C pre-processor
m hject Cfile
nm hject C++ file

.S assenbly | anguage file
.S W ndows: assenbly | anguage file
ARM CodeSourcery Sourcery Lite
. SX assenbly | anguage file + C pre-processor
PCSI X: assenbly | anguage file + C pre-processor
. Spp assenbly | anguage file + C pre-processor
. SPP assenbly | anguage file + C pre-processor

Thetarget object file prefix, specified by the $OBI PREFI X construction variable (nothing by default), and suffix,
specified by the $0OBJ SUFFI X construction variable (. obj on Windows systems, . 0 on POSIX systems), are
automatically added to the target if not already present. Examples:

env. Stati cOoj ect (target="aaa', source='aaa.c')
env. St ati cObj ect (target="bbb. o', source='bbb.c++')
env. Stati cObj ect (target="'"ccc.obj', source='ccc.f")

Notethat the sourcefileswill be scanned according to the suffix mappingsinthe Sour ceFi | eScanner object.
See the manpage section " Scanner Objects’ for more information.

stfile()

Substfile()

The Subst f i | e builder creates a single text file from a template consisting of afile or set of files (or nodes),
replacing text usingthe $SUBST DI CT construction variable (if set). If aset, they are concatenated into the target
fileusing thevaueof the$LI NESEPARATOR construction variable asaseparator between contents; the separator
is not emitted after the contents of the last file. Nested lists of sourcefiles are flattened. Seeaso Text fi | e.

If asingle sourcefile nameis specified and hasa. i n suffix, the suffix is stripped and the remainder of the name
is used as the default target name.

The prefix and suffix specified by the $SUBSTFI LEPREFI X and $SUBSTFI LESUFFI X construction variables
(an empty string by default in both cases) are automatically added to the target if they are not already present.

If aconstruction variable named $SUBST_DI CT is present, it may be either a Python dictionary or a sequence of
(key, val ue) tuples. If itisadictionary it isconverted into alist of tupleswith unspecified order, soif onekey is
aprefix of another key or if one substitution could be further expanded by another subsitition, it is unpredictable
whether the expansion will occur.

~

'—‘-‘ SCONS 64

Any occurrences of akey in the source are replaced by the corresponding value, which may be a Python callable
function or a string. If the value is a callable, it is called with no arguments to get a string. Strings are subst-
expanded and the result replaces the key.

env = Environnent (tool s=['default'])

env['prefix'] = "'/usr/bin'
script_dict = {' @refix@: '/bin', '@xec_prefix@: '$prefix'}
env. Substfile('script.in', SUBST D CT=script_dict)

conf dict = {' WERSION% : '1.2.3", 'U%BASE%: ' My/Prog'}
env. Substfile('config.h.in', conf_dict, SUBST Dl CT=conf _dict)

UNPREDI CTABLE - one key is a prefix of another
bad foo = {'$foo': '$foo', 'S$foobar': '$foobar'}
env. Substfile(' foo.in', SUBST DI CT=bad_f 00)

PREDI CTABLE - keys are applied |l ongest first
good foo = [(' $foobar', '$foobar'), ('$foo', '$foo')]
env. Substfile('foo.in', SUBST DI CT=good_f 00)

UNPREDI CTABLE - one substitution could be futher expanded
bad bar = {' @ar@: ' @oap@, ' @Goap@: 'lye'}
env. Substfile(' bar.in', SUBST_DI CT=bad_bar)

PREDI CTABLE - substitutions are expanded in order
good bar = ((' @ar@, ' @oap@), (' @oap@, 'lye'))
env. Substfile(' bar.in', SUBST_DI CT=good_bar)

the SUBST_DI CT may be in conmon (and not an overri de)
substutions = {}
subst = Environment(tool s=['textfile'], SUBST DI CT=substitutions)
substitutions[' @oo@] = 'foo
subst['SUBST DICT' J[' @ar@] = 'bar'
subst . Substfil e(
"pgnt. c',
[Val ue(' #i nclude "@oo@h"'), Value('#include "@ar@h""'), "common.in", "pgnl.in"],

)
subst . Substfil e(
''pgne. c',
[Val ue(' #i nclude "@oo@h"'), Value('#include "@ar@h""'), "commn.in", "pgnR.in"],
)
Tar ()
env.Tar ()

Buildsatar archive of the specified filesand/or directories. Unlike most builder methods, the Tar builder method
may be called multipletimesfor agiven target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env. Tar('src.tar', 'src')

b4

SCONS 65

Create the stuff.tar file.

env. Tar (' stuff', ['"subdirl', 'subdir2'])

Also add "another"” to the stuff.tar file.
env. Tar (' stuff', 'another')

Set TARFLAGS to create a gzip-filtered archive.
env = Environment (TARFLAGS = '-c -2')
env. Tar('foo.tar.gz', 'foo')

Also set the suffix to .tgz.

env = Environment (TARFLAGS = '-c -2',
TARSUFFI X = ' .tgz")

env. Tar (' foo')

Textfil e()

env.Textfil e()
The Text fi | e builder generates a single text file from atemplate consisting of alist of strings, replacing text
using the $SUBST_DI CT construction variable (if set) - see Subst fi | e for adescription of replacement. The
strings will be separated in the target file using the value of the $L1 NESEPARATOR construction variable; the
line separator is not emitted after the last string. Nested lists of source strings are flattened. Source strings need
not literally be Python strings:. they can be Nodes or Python objects that convert cleanly to Val ue nodes

The prefix and suffix specified by the STEXTFI LEPREFI X and $TEXTFI LESUFFI X construction variables
(by default an empty string and . t xt , respectively) are automatically added to the target if they are not already
present. Examples:

builds/wites foo.txt
env. Textfile(target="foo.txt', source=['CGoethe', 42, 'Schiller'])

builds/wites bar.txt
env. Textfile(target="bar', source=['lalala', 'tanteratei'], LINESEPARATOR='|*")

nested lists are flattened automatically
env. Textfile(target="blob', source=['lalala', ['CGoethe', 42, 'Schiller'], 'tanteratei']

files may be used as input by waping themin File()

env. Textfil e(
target='concat', # concatenate files with a marker between
source=[File('concatl'), File('concat2')],

)

Results:

f 0o. t xt
Coet he

42
Schil | er

bar . t xt

| al al a] *t ant er at ei

Iy
=== SCONS 66

bl ob. t xt

| al al a
Coet he

42

Schil | er
tant er at ei

Transl at ()

env.Transl at e()
This pseudo-builder belongs to get t ext toolset. The builder extracts internationalized messages from source
files, updates POT template (if necessary) and then updates PO trandations (if necessary). If $POAUTA NI T
is set, missing POfiles will be automatically created (i.e. without translator person intervention). The variables
$LI NGUAS_FI LE and $POTDOMAI N are taken into acount too. All other construction variables used by
POTUpdat e, and POUpdat e work here too.

Example 1. The simplest way isto specify input files and output languagesinline in a SCons script when invoking
Transl ate

SConscript in 'po/' directory

env = Environnment(tools = ["default", "gettext"])
env[' POAUTONIT'] = 1
env. Translate(['en','pl'], ['../a.cpp','../b.cpp'])

Example 2. If you wish, you may also stick to conventional style known from autotools, i.e. using POTFI LES. i n
and LI NGUAS files

LI NGUAS
en pl
#end

POTFI LES. in

a. cpp

b. cpp
end

SConscri pt

env = Environnment(tools = ["default", "gettext"])

env[' POAUTONIT'] =1

env[' XGETTEXTPATH] =['../"]

env. Transl at e(LI NGQUAS _FI LE = 1, XGETTEXTFROM = ' POTFI LES.in")

The last approach is perhaps the recommended one. It allows easily split internationalization/localization onto
separate SCons scripts, where a script in source tree is responsible for translations (from sources to POfiles) and
script(s) under variant directories are responsible for compilation of POto MOfiles to and for installation of MO
files. The "gluing factor" synchronizing these two scripts is then the content of LI NGUAS file. Note, that the
updated POT and POfiles are usually going to be committed back to the repository, so they must be updated
within the source directory (and not in variant directories). Additionaly, the filelisting of po/ directory contains
LI NGUAS file, so the source tree looks familiar to trandlators, and they may work with the project in their usual

way.

Iy
=== SCONS 67

Example 3. Let's prepare a devel opment tree as below

pr oj ect/

+ SConst r uct

+ bui | d/

+ src/

+ po/
+ SConscri pt

SConscri pt.i 18n
POTFI LES. i n

LI NGUAS

+ + +

with bui | d being variant directory. Write the top-level SConst r uct script asfollows

SConstruct

env = Environment(tools = ["default", "gettext"])
VariantDir('build , 'src', duplicate = 0)

env[' POAUTONIT] =1

SConscri pt (' src/ po/ SConscript.i1l8n', exports = 'env')
SConscri pt (' bui | d/ po/ SConscript', exports = 'env')

thesr c/ po/ SConscri pt.i 18nas

src/ po/ SConscript.i 18n
| mport (' env')
env. Transl at e(LI NGQUAS_FI LE=1, XGETTEXTFROME' POTFI LES. i n', XGETTEXTPATH=['../'])

and thesr c/ po/ SConscr i pt

src/ po/ SConscri pt
| nport (' env')
env. MOFi | es(LI NGUAS FI LE = 1)

Such setup produces POT and POfiles under source treein sr ¢/ po/ and binary MOfiles under variant tree in
bui | d/ po/ . Thisway the POT and POfiles are separated from other output files, which must not be committed
back to source repositories (e.g. MOfiles).

Note

In above example, the PO files are not updated, nor created automatically when you issue scons '.'
command. The files must be updated (created) by hand via scons po-update and then MOfiles can be
compiled by running scons'.".

TypelLi brary()

env.Typeli brary()
BuildsaWindowstypelibrary (. t | b) filefromaninput IDL file(. i dI). Inaddition, it will build the associated
interface stub and proxy source files, naming them according to the base name of the . i dI file. For example,

env. Typeli brary(source="foo.idl")

Will createf 0o. t1 b,foo. h,foo_i.c,foo_p.candfoo_dat a. c files.

Iy
=== SCONS 68

U c()

env.Ui c()
Builds a header file, an implementation file and amoc file from an ui file. and returns the corresponding nodes in
the that order. This builder is only available after using the tool gt . Note: you can specify . ui filesdirectly as
source files to the Pr ogr am Li br ary and Shar edLi br ar y builders without using this builder. Using this
builder lets you override the standard naming conventions (be careful: prefixes are aways prepended to names
of built files; if you don't want prefixes, you may set themto ™). Seethe $QTDI R variable for more information.
Example:

env.U c('foo.ui') # ->['foo.h', "uic _foo.cc', 'nobc_foo.cc']
env. Ui c(
target=Split('include/foo.h gen/uicfoo.cc gen/nocfoo.cc'),
sour ce='foo0. ui '
) # ->['"include/foo.h', 'gen/uicfoo.cc', 'gen/nocfoo.cc']

Zip()
env.Zi p()

Buildsazip archive of the specified filesand/or directories. Unlike most builder methods, the Zi p builder method
may be called multipletimesfor agiven target; each additional call addsto thelist of entriesthat will be built into
the archive. Any source directories will be scanned for changes to any on-disk files, regardless of whether or not
scons knows about them from other Builder or function calls.

env. Zip('src.zip', 'src')

Create the stuff.zip file.

env. Zi p('stuff', ['"subdirl', 'subdir2'])

Also add "another" to the stuff.tar file.
env. Zi p(' stuff', 'another')

All targets of builder methods automatically depend on their sources. An explicit dependency can be specified using
theenv. Depends method of a construction environment (see below).

In addition, scons automatically scans source files for various programming languages, so the dependencies do not
need to be specified explicitly. By default, SCons can C source files, C++ source files, Fortran source files with . F
(POSIX systemsonly), . f pp, or . FPP file extensions, and assembly language fileswith . S (POSIX systems only),
. Spp, or . SPP files extensions for C preprocessor dependencies. SCons also has default support for scanning D
sourcefiles, Y ou can also write your own Scannersto add support for additional sourcefile types. These can be added
to the default Scanner object used by the Cbj ect , St at i cCbj ect and Shar edChj ect Builders by adding them
tothe Sour ceFi | eScanner object. See the section called “ Scanner Objects’ for more information about defining
your own Scanner objects and using the Sour ceFi | eScanner object.

Methods and Functions To Do Things

In addition to Builder methods, scons provides a number of other construction environment methods and global
functions to manipulate the build configuration.

Usually, a construction environment method and global function with the same name both exist for convenience. In
the following list, the global function is documented in this style:

Functi on(argunents, [optional argunents])

and the construction environment method looks like:

Iy
=== SCONS 69

env. Functi on(argunents, [optional argunents])
If the function can be called both ways, then both forms are listed.

The global function and same-named construction environment method provide almost identical functionality, with a
couple of exceptions. First, many of the construction environment methods affect only that construction environment,
whiletheglobal function hasaglobal effect. Second, where appropriate, calling thefunctionality through aconstruction
environment will substitute construction variablesinto any supplied string arguments, whilethe global function doesn't
have the context of a construction environment to pick variables from, so it cannot perform the substitution. For
example:

Def aul t (* $FOO)

env = Environnent (FOO=' f 00')
env. Def aul t (' $FOO)

In the above example, the call to the global Def aul t function will add a target named $FOO to the list of default
targets, while the call to the env. Def aul t construction environment method will expand the value and add a
target named foo to the list of default targets. For more on construction variable expansion, see the next section on
construction variables.

Global functions may be called from custom Python modules that you import into an SConscript file by adding the
following import to the Python module:

from SCons. Scri pt inport *
Construction environment methods and global functions provided by scons include:

Action(action, [output, [var, ...]] [key=value, ...])

env.Action(action, [output, [var, ...]] [key=value, ...])
A factory function to create an Action object for the specifiedact i on. Seethe manpage section "Action Objects"
for a complete explanation of the arguments and behavior.

Note that the env. Act i on form of the invocation will expand construction variables in any argument strings,
including theact i on argument, at thetimeit is called using the construction variablesin the env construction
environment through which env. Act i on was called. The Act i on global function form delays al variable
expansion until the Action object is actually used.

AddMet hod(obj ect, function, [nane])

env.AddMet hod(f uncti on, [nane])
Addsf unct i on toanobject asamethod. f unct i on will be called with an instance object asthe first argument
as for other methods. If name is given, it is used as the name of the new method, else the name of f unct i on
is used.

When the global function AddMet hod is called, the object to add the method to must be passed as the first
argument; typically this will be Envi r onment , in order to create a method which applies to all construction
environments subsequently constructed. When called using the env. AddMet hod form, the method is added to
the specified construction environment only. Added methods propagate through env. Cl one calls.

More examples:

Function to add nmust accept an instance argunent.

Iy
=== SCONS 70

The Pyt hon convention is to call this "self".
def ny_nethod(self, arg):
print("my_nethod() got", arg)

Use the global function to add a nmethod to the Environment class:
AddMet hod(Envi r onment, my_net hod)

env = Environment ()

env. ny_net hod(' arg')

Use the optional nane argunment to set the name of the nethod:
env. AddMet hod(ny_net hod, ' ot her net hod_nane')
env. ot her _net hod_nane(' anot her arg')

AddOpt i on(ar gunent s)
Adds a local (project-specific) command-line option. ar gunent s are the same as those supported by the
add_opt i on method inthe standard Pythonlibrary moduleopt par se, with afew additional capabilities noted
below. See the documentation for opt par se for athorough discussion of its option-processing capabities.

In addition to the arguments and values supported by theopt par se add_opt i on method, AddOpt i on alows
setting the nar gs keyword value to a string consisting of a question mark (' ?') to indicate that the option
argument for that option string isoptional. If the option string is present on the command line but has no matching
option argument, the value of the const keyword argument is produced as the value of the option. If the option
string is omitted from the command line, the value of the def aul t keyword argument is produced, as usudl; if
thereisno def aul t keyword argument in the AddOpt i on call, None is produced.

opt par se recognizes abbreviations of long option names, as long as they can be unambiguously resolved. For
example, if add_opt i on iscalled to define a- - devi cenane option, it will recognize - - devi ce, - - dev
and so forth aslong asthereis no other option which could a so match to the same abbreviation. Options added via
AddOpt i on do not support the automatic recognition of abbreviations. Instead, to allow specific abbreviations,
include them as synonyms in the AddOpt i on call itself.

Once a new command-line option has been added with AddOpt i on, the option value may be accessed
using Get Opti on or env. Get Opti on. Set Opti on is not currently supported for options added with
AddOpt i on.

Help text for an option isacombination of the string suppliedinthehel p keyword argument to AddOpt i on and
information collected from the other keyword arguments. Such help is displayed if the - h command line option
isused (but not with - H). Help for al local options is displayed under the separate heading L ocal Options. The
options are unsorted - they will appear in the help text in the order in which the AddOpt i on calls occur.

Example:

AddOpt i on(
"--prefix',
dest =' prefi x',
nar gs=1,
type='string',
action='store',
metavar='DI R,
hel p="instal [ati on prefix"',

)
env = Environnment (PREFI X=Cet Opti on("' prefix'))

For that example, the following help text would be produced:

Iy
=== SCONS 71

Local Options:
--prefix=D R installation prefix

Help text for local options may be unavailableif the Hel p function has been called, seethe Hel p documentation
for details.

Note

As an artifact of the internal implementation, the behavior of options added by AddOpt i on which
take option arguments is undefined if whitespace (rather than an = sign) is used as the separator on the
command line. Users should avoid such usage; it is recommended to add a note to this effect to project
documentation if the situation is likely to arise. In addition, if the nar gs keyword is used to specify
more than one following option argument (that is, with avalue of 2 or greater), such arguments would
necessarily be whitespace separated, triggering the issue. Developers should not use AddOpt i on this
way. Future versions of SCons will likely forbid such usage.

AddPost Acti on(target, action)

env.AddPost Acti on(t arget, action)

Arranges for the specified act i on to be performed after the specified t ar get has been built. The specified
action(s) may bean Action object, or anything that can be converted into an Action object See the manpage section
"Action Objects" for a complete explanation.

When multiple targets are supplied, the action may be called multiple times, once after each action that generates
one or more targetsin thelist.

AddPr eActi on(t arget, action)

env.AddPr eAction(t arget, action)

Arrangesfor the specified act i on to be performed before the specifiedt ar get isbuilt. The specified action(s)
may be an Action object, or anything that can be converted into an Action object See the manpage section " Action
Objects’ for a complete explanation.

When multiple targets are specified, the action(s) may be called multiple times, once before each action that
generates one or more targetsin thelist.

Notethat if any of thetargetsare built in multiple steps, the action will beinvoked just beforethe"final" action that
specifically generates the specified target(s). For example, when building an executable program from a specified
source . ¢ fileviaanintermediate object file:

foo = Progran('foo.c')
AddPr eActi on(foo, 'pre_action')

The specified pr e_act i on would be executed before scons calls the link command that actually generates the
executable program binary f 00, not before compiling the f 0o. ¢ file into an object file.

Alias(alias, [targets, [action]])

env.Alias(alias, [targets, [action]])

Creates one or more phony targets that expand to one or more other targets. An optional act i on (command) or
list of actions can be specified that will be executed whenever the any of the alias targets are out-of-date. Returns
the Node object representing the alias, which exists outside of any file system. This Node object, or the aliasname,
may be used as a dependency of any other target, including another dias. Al i as can be called multiple timesfor
the same aliasto add additional targetsto the alias, or additional actionsto thelist for thisalias. Aliases are global
even if set through the construction environment method.

Examples:

Iy
=== SCONS 72

Alias('install")

Alias('install', "/usr/bin")

Alias(['install', "install-lib"], "/usr/local/lib")
env.Alias('install', ['/usr/local/bin', '"/fusr/local/lib'])
env.Alias('install', ['/usr/local/man'])

env. Alias('update', ['filel', '"file2'], "update_database $SOURCES")

Al | owSubst Excepti ons([exception, ...])
Specifiesthe exceptionsthat will be allowed when expanding construction variables. By default, any construction
variable expansions that generate a NaneEr r or or | ndexErr or exception will expandtoa'' (an empty
string) and not cause scons to fail. All exceptions not in the specified list will generate an error message and
terminate processing.
If Al'l owSubst Excepti ons is called multiple times, each call completely overwrites the previous list of
allowed exceptions.
Example:
Requires that all construction variabl e names exist.
(You may wish to do this if you want to enforce strictly
that all construction variables nust be defined before use.)
Al | owSubst Except i ons()
Also allow a string containing a zero-division expansi on
like "${1 / 0}' to evalute to '".
Al | owSubst Except i ons(| ndexError, NameError, ZeroDi visionError)
Al waysBui | d(target, ...)
env.Al waysBui | d(target, ...)

Marks each givent ar get so that it is always assumed to be out of date, and will always be rebuilt if needed.
Note, however, that Al waysBui | d does not add its target(s) to the default target list, so the targets will only be
built if they are specified on the command line, or are a dependent of atarget specified on the command line--but
they will always be built if so specified. Multiple targets can be passed in to asingle call to Al waysBui | d.

env.Append(key=val, [...])

Intelligently append values to construction variables in the construction environment named by env. The
construction variables and values to add to them are passed as key=val pairs (Python keyword arguments).
env. Append is designed to allow adding values without normally having to know the data type of an existing
construction variable. Regular Python syntax can also be used to manipul ate the construction variable, but for that
you must know the type of the construction variable: for example, different Python syntax is needed to combine
a list of values with a single string value, or vice versa. Some pre-defined construction variables do have type
expectations based on how SCons will use them, for example $CPPDEFI NES is normally a string or a list of
strings, but can be a string, alist of strings, alist of tuples, or adictionary, while $L1 BEM TTER would expect
acalable or list of callables, and $BUI LDERS would expect a mapping type. Consult the documentation for the
various construction variables for more details.

Thefollowing descriptions apply to both the append and prepend functions, the only difference being theinsertion
point of the added values.

If env. does not have a construction variable indicated by key, val isadded to the environment under that key
asis.

~

'—‘-‘ SCONS 73

val can be aimost any type, and SCons will combine it with an existing value into an appropriate type, but
there are a few special cases to be aware of. When two strings are combined, the result is normally a new string,
with the caller responsible for supplying any needed separation. The exception to thisis the construction variable
$CPPDEFI NES, in which each item will be postprocessed by adding a prefix and/or suffix, so the contents are
treated as a list of strings, that is, adding a string will result in a separate string entry, not a combined string.
For $CPPDEFI NES as well as for $LI BS, and the various * PATH; variables, SCons will supply the compiler-
specific syntax (e.g. adding a- Dor / Dprefix for $CPPDEFI NES), so this syntax should be omitted when adding
values to these variables. Example (gcc syntax shown in the expansion of CPPDEFI NES):

env = Environnent (CXXFLAGS="-std=c11", CPPDEFI NES="RELEASE")

print (" CXXFLAGS={}, CPPDEFI NES={}".format (env[' CXXFLAGS], env[' CPPDEFI NES']))
notice including a | eading space i n CXXFLAGS val ue

env. Append(CXXFLAGS=" - O', CPPDEFI NES="EXTRA")

print (" CXXFLAGS={}, CPPDEFI NES={}".format (env[' CXXFLAGS], env[' CPPDEFI NES']))
print (" CPPDEFINES wi || expand to {}".format(env.subst ("$ CPPDEFFLAGS")))

$ scons -Q

CXXFLAGS=- st d=c11, CPPDEFI NES=RELEASE

CXXFLAGS=-st d=c11 - O, CPPDEFI NES=[' RELEASE', ' EXTRA']
CPPDEFI NES wi I | expand to - DRELEASE - DEXTRA

scons: ~.' is up to date.

Because $CPPDEFI NES is intended to describe C/C++ pre-processor macro definitions, it accepts additional
syntax. Preprocessor macros can bevalued, or un-valued, asin- DBAR=1 or - DFOQO. The macro can be be supplied
as acomplete string including the value, or as atuple (or list) of macro, value, or asadictionary. Example (again
gcce syntax in the expanded defines):

env = Environnment (CPPDEFI NES=" FQOO'")

print (" CPPDEFI NES={}".format (env["' CPPDEFI NES']))

env. Append(CPPDEFI NES=" BAR=1")

print (" CPPDEFI NES={}".format (env["' CPPDEFI NES']))

env. Append(CPPDEFI NES=(" OTHER', 2))

print (" CPPDEFI NES={}".format (env["' CPPDEFI NES']))

env. Append(CPPDEFI NES={" EXTRA": "arg"})

print (" CPPDEFI NES={}".format (env[' CPPDEFI NES']))

print("CPPDEFINES will expand to {}".fornat(env.subst ("$_CPPDEFFLAGS")))

$ scons -Q

CPPDEFI NES=FCO

CPPDEFI NES=[' FOO , ' BAR=1']

CPPDEFI NES=[' FOO , 'BAR=1', ('OTHER , 2)]

CPPDEFI NES=[' FOO , 'BAR=1', ('OTHER , 2), {'EXTRA': 'arg'}]
CPPDEFI NES wi || expand to -DFQOO - DBAR=1 - DOTHER=2 - DEXTRA=ar g
scons: ' is up to date.

Adding astring val to adictonary construction variable will enter val asthe key in the dict, and None asits
value. Using atuple type to supply a key + value only works for the special case of $CPPDEFI NES described
above.

Although most combinations of typeswork without needing to know the details, some combinations do not make
sense and a Python exception will be raised.

Iy
=== SCONS 74

When using env. Append to modify construction variables which are path specifications (conventionally, the
names of such end in PATH), it isrecommended to add the values as alist of strings, even if thereisonly asingle
string to add. The same goes for adding library namesto $LI BS.

env. Append(CPPPATH=["#/ i ncl ude"])
Seeasoenv. AppendUni que, env. Prepend and env. Pr ependUni que.

env.AppendENVPat h(nane, newpath, [envnane, sep, del ete_existing=Fal se])

Append path elements specified by newpat h to the given search path string or list nane in mapping envnane
inthe construction environment. Supplying envnane isoptional: the default isthe execution environment $ENV.
Optiona sep is used as the search path separator, the default is the platform's separator (0s. pat hsep). A
path element will only appear once. Any duplicates in newpat h are dropped, keeping the last appearing (to
preserve path order). If del et e_exi sti ng isFal se (the default) any addition duplicating an existing path
element isignored; if del et e_exi sti ng is Tr ue the existing value will be dropped and the path element
will be added at the end. To help maintain uniqueness al paths are normalized (using os. pat h. nor nmpat h
and os. pat h. nor ntase).

Example:

print('before:', env['ENV]['I|NCLUDE'])

i ncl ude_path = '/foo/bar:/foo'

env. AppendENVPat h(' | NCLUDE' , i ncl ude_pat h)
print('after:', env['ENV]['INCLUDE])

Yields:

bef ore: /foo:/biz
after: /biz:/fool/bar:/foo

Seealso env. PrependENVPat h.

env.AppendUni que(key=val, [...], del ete_existing=Fal se)
Append values to construction variables in the current construction environment, maintaining uniqueness. Works
like env. Append (see for details), except that values already present in the construction variable will not be
added again. If del et e_exi sting isTrue, the existing matching value is first removed, and the requested
value is added, having the effect of moving such values to the end.

Example:

env. AppendUni que(CCFLAGS=' -g', FOO=['fo00.yyy'])
Seeasoenv. Append, env. Prepend and env. Pr ependUni que.

Bui | der (action, [argunents])

env.Bui | der (action, [arguments])
Creates a Builder object for the specified act i on. See the manpage section "Builder Objects' for a complete
explanation of the arguments and behavior.

Notethat theenv. Bui | der () form of theinvocationwill expand construction variablesin any argumentsstrings,
including theact i on argument, at thetime it is called using the construction variables in the env construction
environment through which env. Bui | der wascaled. TheBui | der form delays all variable expansion until
after the Builder object is actualy called.

Iy
=== SCONS 75

CacheDir (cache_dir, custom cl ass=None)

env.CacheDir (cache_dir, custom cl ass=None)
Direct sconsto maintain aderived-filecacheincache_di r . Thederived filesin the cache will be shared among
all the builds specifying thesamecache_di r . Specifyingacache_di r of None disablesderived file caching.

When gpecifying a custom cl ass which should be a class type which is a subclass of
SCons. CacheDir. CacheDir, SCons will internaly invoke this class to use for performing
caching operations. This argument is optional and if left to default None, will use the default
SCons. CacheDi r. CacheDi r class.

Calling the environment method env. CacheDi r limits the effect to targets built through the specified
construction environment. Calling the global function CacheDi r sets a global default that will be used by
all targets built through construction environments that do not set up environment-specific caching by calling
env. CacheDir.

When derived-file caching is being used and scons finds a derived file that needs to be rebuilt, it will first look
in the cache to see if a file with matching build signature exists (indicating the input file(s) and build action(s)
were identical to those for the current target), and if so, will retrieve the file from the cache. scons will report
Retrieved "file' from cache instead of the normal build message. If the derived fileis not present in
the cache, scons will build it and then place a copy of the built file in the cache, identified by its build signature,
for future use.

TheRetrieved “file' from cache messages are useful for human consumption, but less so when
comparing log files between scons runs which will show differences that are noisy and not actually significant.
To disable, use the - - cache- show option. With this option, scons will print the action that would have been
used to build the file without considering cache retrieval.

Derived-file caching may be disabled for any invocation of scons by giving the - - cache- di sabl e command
line option. Cache updating may be disabled, leaving cache fetching enabled, by giving the - - cache-
readonl y.

If the - - cache- f or ce option is used, scons will place a copy of all derived files in the cache, even if they
already existed and were not built by thisinvocation. Thisisuseful to populate acachethefirsttimeacache_dir
isused for abuild, or to bring a cache up to date after abuild with cache updating disabled (- - cache- di sabl e
or - - cache- r eadonl y) has been done.

The NoCache method can be used to disable caching of specific files. This can be useful if inputs and/or outputs
of sometool areimpossible to predict or prohibitively large.

Note that (at thistime) SCons provides no facilities for managing the derived-file cache. It is up to the devel oper
to arrange for cache pruning, expiry, etc. if needed.

Clean(targets, files_or_dirs)

env.Cl ean(targets, files_or_dirs)
This specifiesalist of files or directories which should be removed whenever the targets are specified with the -
¢ command line option. The specified targets may be alist or an individual target. Multiple callsto Cl ean are
legal, and create new targets or add files and directories to the clean list for the specified targets.

Multiple files or directories should be specified either as separate arguments to the Cl ean method, or as alist.
Cl ean will also accept the return value of any of the construction environment Builder methods. Examples:

The related NoC ean function overrides calling C ean for the same target, and any targets passed to both
functions will not be removed by the - ¢ option.

Examples:

Iy
=== SCONS 76

Clean('foo', ['bar', 'baz'])
Clean('dist', env.Program('hello', "hello.c"))
Clean(['foo', 'bar'], 'sonething else to clean')

In this example, installing the project creates a subdirectory for the documentation. This statement causes the
subdirectory to be removed if the project is deinstalled.

Cl ean(docdir, os.path.join(docdir, projectnane))

env.Cl one([key=val, ...])
Returns a separate copy of a construction environment. If there are any keyword arguments specified, they are
added to the returned copy, overwriting any existing values for the keywords.

Example:

env2
env3

env. Cl one()
env. Cl one(CCFLAGS=' -g')

Additionally, alist of tools and atoolpath may be specified, asinthe Envi r onnent constructor:

def MyTool (env):
env['FOO] = 'bar'

envd = env. C one(tool s=[' nsvc', MyTool])

Thepar se_f | ags keyword argument is also recognized to allow merging command-line style argumentsinto
the appropriate construction variables (see env. Mer geFl ags).

create an environnment for conpiling programs that use wxW dgets
wx_env = env. C one(parse_flags='!wx-config --cflags --cxxflags')

Conmand(t ar get, source, action, [key=val, ...])

env.Conmand(t ar get, source, action, [key=val, ...])
Executes aspecificact i on (or list of actions) to build at ar get fileor filesfromasour ce fileor files. This
is more convenient than defining a separate Builder object for a single special-case build.

The Command function accepts source_scanner, target_scanner, source_factory, and
target _fact ory keyword arguments. These arguments can be used to specify a Scanner object that will be
used to apply acustom scanner for a source or target. For example, theglobal Di r Scanner object can be used if
any of the sourceswill be directories that must be scanned on-disk for changesto filesthat aren't already specified
in other Builder of function calls. The* _f act or y arguments take a factory function that Commrand will useto
turn any sources or targets specified as strings into SCons Nodes. See the manpage section "Builder Objects’ for
more information about how these arguments work in a Builder.

Any other keyword arguments specified override any same-named existing construction variables.

An action can be an external command, specified asastring, or a callable Python object; see the manpage section
"Action Objects’ for more complete information. Also note that a string specifying an external command may be
preceded by an at-sign (@ to suppress printing the command in question, or by a hyphen (-) to ignore the exit
status of the external command.

Examples:

Iy
=== SCONS 77

env. Comand(
target='foo0.out',
source='foo0.in",
acti on="$FO0O BU LD < $SOURCES > $TARCGET"

env. Comand(
target =' bar. out',
source="bar.in",
action=["rm-f $TARGET", "$BAR BU LD < $SOURCES > $TARGET"],
ENV={' PATH : '/usr/local /bin/"},

i mport os
def rename(env, target, source):
os.renanme(’'.tnmp', str(target[0]))

env. Comand(
target =' baz. out',
source='baz.in",
action=["$BAZ BU LD < $SOURCES > .tnp", renane],

)

Note that the Command function will usually assume, by default, that the specified targets and/or sources are
Files, if no other part of the configuration identifies what type of entriesthey are. If necessary, you can explicitly
specify that targets or source nodes should be treated as directories by using the Di r or env. Di r functions.

Examples:

env. Command(' ddd.list', Dir('ddd), 'Is -1 $SOURCE > $TARGET')

env[' DISTDIR] = 'destination/directory'
env. Command(env. Dir (' $DI STDIR)), None, make_distdir)

Also notethat SConswill usually automatically create any directory necessary to hold atarget file, so you normally
don't need to create directories by hand.

Configure(env, [customtests, conf_dir, log_file, config_h])
env.Configure(fcustomtests, conf_dir, log_file, config_h])
Creates a Configure object for integrated functionality similar to GNU autoconf. See the manpage section
"Configure Contexts' for a complete explanation of the arguments and behavior.

Deci der (f uncti on)

env.Deci der (f unct i on)
Specifies that all up-to-date decisions for targets built through this construction environment will be handled by
the specified f unct i on. f unct i on can be the name of afunction or one of the following strings that specify
the predefined decision function that will be applied:

"ti mestanp- newer"”
Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's timestamp is newer than
thetarget file's timestamp. Thisisthe behavior of the classic Make utility, and nake can be used a synonym
forti mest anp- newer .

Iy
=== SCONS 78

"timestanp-match”
Specifies that a target shall be considered out of date and rebuilt if the dependency's timestamp is different
than the timestamp recorded the last time the target was built. This provides behavior very similar to the
classic Make utility (in particular, files are not opened up so that their contents can be checksummed) except
that thetarget will also berebuilt if adependency file hasbeen restored to aversion with an earlier timestamp,
such as can happen when restoring files from backup archives.

"content"
Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's content has changed since
the last time the target was built, as determined be performing an checksum on the dependency's contents
and comparing it to the checksum recorded the last time the target was built. MD5 can be used as a synonym
for cont ent , but it is deprecated.

"content-tinmestanmp"

Specifiesthat atarget shall be considered out of date and rebuilt if the dependency's content has changed since
the last time the target was built, except that dependencies with a timestamp that matches the last time the
target was rebuilt will be assumed to be up-to-date and not rebuilt. This provides behavior very similar to the
cont ent behavior of always checksumming file contents, with an optimization of not checking the contents
of files whose timestamps haven't changed. The drawback is that SCons will not detect if afile's content has
changed but its timestamp is the same, as might happen in an automated script that runs a build, updates a
file, and runs the build again, all within a single second. MD5- t i mest anp can be used as a synonym for
content-ti mest anp, but it is deprecated.

Examples:

Use exact timestanp matches by default.
Deci der (' ti mestanp-mat ch')

Use hash content signatures for any targets built
wth the attached construction environnent.
env. Deci der (' content')

In addition to the above already-available functions, the f unct i on argument may be a Python function you
supply. Such afunction must accept the following four arguments:

dependency
The Node (file) which should causethet ar get to berebuilt if it has "changed" sincethelast tmet ar get
was built.

target
The Node (file) being built. In the normal case, this is what should get rebuilt if the dependency has
"changed.”

prev_ni
Stored information about the state of the dependency the last time the t ar get was built. This can be
consulted to match various file characteristics such as the timestamp, size, or content signature.

repo_node
If set, use this Node instead of the one specified by dependency to determine if the dependency has
changed. This argument is optional so should be written as a default argument (typically it would be written
asr epo_node=None). A caller will normally only set thisif the target only existsin a Repository.

Thef unct i on should return avalue which evaluates Tr ue if the dependency has "changed" since the last
time the t ar get was built (indicating that the target should be rebuilt), and a value which evaluates Fal se

Iy
=== SCONS 79

otherwise (indicating that the target should not be rebuilt). Note that the decision can be made using whatever
criteriaare appopriate. Ignoring some or al of the function arguments is perfectly normal.

Example:

def ny_deci der (dependency, target, prev_ni, repo_node=None):
return not os.path.exists(str(target))

env. Deci der (ny_deci der)

Defaul t(target[, ...])

env.Defaul t (target[, ...])
Specify default targets to the SCons target selection mechanism. Any call to Def aul t will cause SCons to use
the defined default target list instead of its built-in algorithm for determining default targets (see the manpage
section "Target Selection”).

t ar get may be one or more strings, alist of strings, aNodeLi st asreturned by a Builder, or None. A string
t ar get may be the name of afile or directory, or atarget previously defined by acall to Al i as (defining the
alias later will still create the dlias, but it will not be recognized as a default). Callsto Def aul t are additive. A
t ar get of None will clear any existing default target list; subsequent calls to Def aul t will add to the (now
empty) default target list like normal.

Both forms of this call affect the same global list of default targets; the construction environment method applies
construction variable expansion to the targets.

The current list of targets added using Def aul t isavailableinthe DEFAULT _TARCGETS list (see below).

Examples:

Default('foo', 'bar', 'baz')

env. Default(['a", "b', "c'])

hell o = env. Progran(' hell o', "hello.c")
env. Def aul t (hel | o)

Def aul t Envi ronment ([** kwar gs])
Instantiates and returnsthe default construction environment object. The default environment isused internally by
SConsin order to execute many of the global functionsinthislist (that is, those not called as methods of a specific
construction environment). It is not mandatory to call Def aul t Envi r onnment : the default environment will
be instantiated automatically when the build phase beginsif the function has not been called, however calling it
explicitly gives the opportunity to affect and examine the contents of the default environment.

The default environment is a singleton, so the keyword arguments affect it only on the first call, on subsequent
calls the already-constructed object is returned and any keyword arguments are silently ignored. The default
environment can be modified after instantiation in the same way as any construction environment. Modifying the
default environment has no effect on the construction environment constructed by an Envi r onnent or Cl one
cal.

Depends(t ar get, dependency)

env.Depends(t ar get, dependency)
Specifies an explicit dependency; the t ar get will be rebuilt whenever the dependency has changed. Both
the specified t ar get and dependency can be a string (usualy the path name of afile or directory) or Node
objects, or alist of strings or Node objects (such as returned by a Builder call). This should only be necessary for
cases where the dependency is not caught by a Scanner for thefile.

Example:

Iy
=== SCONS 80

env. Depends(' foo', 'other-input-file-for-foo')

nylib = env.Library('mylib.c")
installed |ib = env.Install ("lib", nylib)
bar = env. Program(' bar.c')

Arrange for the library to be copied into the installation
directory before trying to build the "bar" program

(Note that this is for exanple only. A "real” library

dependency woul d normal Iy be configured through the $LIBS
and $LI BPATH vari abl es, not using an env. Depends() call.)

env. Depends(bar, installed_lib)

env.Det ect (pr ogs)

env

Dir
env

env

Find an executable from one or more choices. pr ogs may be a string or a list of strings. Returns the first
value from pr ogs that was found, or None. Executable is searched by checking the paths in the execution
environment (env[' ENV'] [' PATH]). On Windows systems, additionally appliesthefilename suffixesfound
in the execution environment (env[' ENV'] [' PATHEXT']) but will not include any such extension in the
return value. env. Det ect isawrapper around env. Wher el s.

.Di ctionary([vars])

Returns adictionary object containing the construction variables in the construction environment. If there are any
arguments specified, the values of the specified construction variables are returned as a string (if one argument)
or asalist of strings.

Example:

cvars = env.Dictionary()
cc_values = env.Dictionary('CC, 'CCFLAGS , 'CCCOM)

(name, [directory])

.Dir(nane, [directory])

Returns Directory Node(s). A Directory Node is an object that represents a directory. nane can be arelative or
absolute path or alist of such paths. di r ect or y isan optional directory that will be used asthe parent directory.
If nodi rect ory isspecified, the current script's directory is used as the parent.

If name isasingle pathname, the corresponding node isreturned. If nane isalist, SConsreturnsalist of nodes.
Construction variables are expanded in nane.

Directory Nodes can be used anywhere you would supply a string as a directory name to a Builder method or
function. Directory Nodes have attributes and methods that are useful in many situations; see manpage section
"File and Directory Nodes' for more information.

Dump([key], [format])
Serializes construction variables to a string. The method supports the following formats specified by f or mat :

pretty
Returns a pretty printed representation of the environment (if f or mat is not specified, thisisthe default).

j son

Returns a JSON-formatted string representation of the environment.
If key isNone (the default) the entire dictionary of construction variablesis serialized. If supplied, it istaken as
the name of a construction variable whose value is serialized.

~

'—‘-‘ SCONS 81

This SConstruct:

env=Envi r onnent ()
print (env. Dunp(' CCCOM))

will print:

"$CC -c -0 $TARGET $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPI NCFLAGS $SOURCES'

While this SConstruct:

env = Environnent ()
print (env. Dunp())

will print:
{ "AR: 'ar'

' ARCOM : ' $AR $ARFLAGS $TARGET $SOURCES\ n$RANLI B $RANLI BFLAGS $TARGET' ,
"ARFLAGS : ['r'],

"AS . 'as',
" ASCOM : ' $AS $ASFLAGS -0 $TARGET $SCURCES',

' ASFLAGS : [],

Ensur ePyt honVer si on(naj or, m nor)

env.Ensur ePyt honVer si on(naj or, m nor)
Ensure that the Python version is at least maj or .ni nor . This function will print out an error message and exit
SCons with anon-zero exit code if the actual Python version is not late enough.

Example:

Ensur ePyt honVer si on(2, 2)

Ensur eSConsVer si on(maj or, minor, [revision])

env.Ensur eSConsVer si on(maj or, minor, [revision])
Ensure that the SCons version is at least maj or . i nor, or maj or. m nor. revi si on. if revi si on is
specified. This function will print out an error message and exit SCons with a non-zero exit code if the actual
SCons version is not late enough.

Examples:

Ensur eSConsVer si on(0, 14)

Ensur eSConsVer si on(0, 96, 90)

Envi ronnent ([key=val ue, ...])

env.Envi ronnent ([key=val ue, ...])
Return anew construction environment initialized with the specified key=val ue pairs. The keyword arguments
parse_fl ags, pl atform tool path, tool s and vari abl es are also specialy recognized. See the
manpage section "Construction Environments" for more details.

Iy
=== SCONS 82

Exe
env

EXi
env

Exp
env

cute(action, [actionargs ...])

.Execut e(action, [actionargs ...])

Executes an Action. act i on may be an Action object or it may be a command-line string, list of commands,
or executable Python function, each of which will first be converted into an Action object and then executed.
Any additional argumentsto Execut e are passed ontothe Act i on factory function which actually createsthe
Action object (see the manpage section Action Objects for a description). Example:

Execut e(Copy('file.out', '"file.in"))

Execut e performsitsactionimmediately, as part of the SConscript-reading phase. There are no sourcesor targets
declared in an Execut e call, so any objects it manipulates will not be tracked as part of the SCons dependency
graph. In the example above, neither fi | e. out norfil e. i n will betracked objects.

Execut e returns the exit value of the command or return value of the Python function. scons prints an error
message if the executed act i on fails (exits with or returns a non-zero value), however it does not, automatically
terminate the build for such a failure. If you want the build to stop in response to a failed Execut e call, you
must explicitly check for a non-zero return value:

i f Execute("nkdir sub/dir/ectory"):
The nkdir failed, don't try to build.
Exit (1)

t ([val ue])

Exit([val ue])

Thistells sconsto exit immediately with the specified val ue. A default exit value of O (zero) isused if no value
is specified.

ort(fvars...], [key=value...])

Export([vars...], [key=value...])

Exports variables from the current SConscript file to a global collection where they can be imported by other
SConscript files. var s may be one or more strings representing variable namesto be exported. If astring contains
whitespace, it is split into separate strings, as if multiple string arguments had been given. A var s argument may
also be a dictionary, which can be used to map variables to different names when exported. Keyword arguments
can be used to provide names and their values.

Export calls are cumulative. Specifying a previously exported variable will overwrite the earlier value. Both
local variables and global variables can be exported.

Examples:

env = Environment ()
Make env available for all SConscript files to Inport().
Export ("env")

package = ' my_nane'
Make env and package avail able for all SConscript files:.
Export ("env", "package")

Make env and package avail able for all SConscript files:
Export (["env", "package"])

Make env avail abl e using the name debug:
Export (debug=env)

~

'—‘-‘ SCONS 83

Make env avail abl e using the name debug:
Export ({"debug”: env})

Note that the SConscr i pt function supports an expor t s argument that allows exporting a variable or set of
variablesto a specific SConscript file or files. See the description below.

Fil e(nane, [directory])

env.Fi | e(nane, [directory])
Returns File Node(s). A File Nodeis an object that represents afile. nanme can be arelative or absolute path or a
list of such paths. di r ect or y isan optional directory that will be used asthe parent directory. If nodi r ect ory
is specified, the current script's directory is used as the parent.

If name isasingle pathname, the corresponding node isreturned. If name isalist, SConsreturnsalist of nodes.
Construction variables are expanded in nane.

File Nodes can be used anywhere you would supply a string as a file name to a Builder method or function. File
Nodes have attributes and methods that are useful in many situations; see manpage section "File and Directory
Nodes' for more information.

FindFile(file, dirs)

env.FindFile(file, dirs)
Search for f i | e in the path specified by di rs. di rs may be alist of directory names or a single directory
name. In addition to searching for files that exist in the filesystem, this function also searches for derived files
that have not yet been built.

Example:

foo = env.FindFile('foo', ['dirl, 'dir2'])

Fi ndl nstal | edFi | es()
env.Fi ndl nstal | edFi | es()
Returnsthe list of targetsset up by thel nst al | or | nst al | As builders.

This function serves as a convenient method to select the contents of a binary package.

Example:

Install ('/bin', ['executable a', 'executable b'])

will return the file node |i st
['/bin/executable a', '/bin/executable b']
Fi ndl nstal | edFi | es()

Install (*/1ib', ['some_library'])

wll return the file node Ii st
['/bin/executable a', '/bin/executable b', "/lib/some_library']
Fi ndl nstal | edFi | es()

Fi ndPat hDi r s(vari abl e)
Returns afunction (actually a callable Python object) intended to be used asthepat h_f unct i on of a Scanner
object. The returned object will look up the specified var i abl e in a construction environment and treat the
construction variable's value as a list of directory paths that should be searched (like $CPPPATH, $L1 BPATH,
€tc.).

Iy
=== SCONS 84

Note that use of Fi ndPat hDi rs is generaly preferable to writing your own pat h_functi on for the
following reasons: 1) The returned list will contain all appropriate directories found in source trees (when
Vari ant Di r is used) or in code repositories (when Reposi t ory or the - Y option are used). 2) scons will
identify expansions of var i abl e that evaluate to the same list of directories as, in fact, the same list, and avoid
re-scanning the directories for files, when possible.

Example:

def ny_scan(node, env, path, arg):
Code to scan file contents goes here...
return include files

scanner = Scanner (name = 'myscanner',
function = ny_scan,
pat h_function = Fi ndPat hDi r s(" MYPATH))

Fi ndSour ceFi | es(node=""."")
env.Fi ndSour ceFi | es(node=""."")
Returns the list of nodes which serve as the source of the built files. It does so by inspecting the dependency tree

starting at the optional argument node which defaults to the ™."'-node. It will then return all leaves of node.
These are all children which have no further children.

Thisfunction is a convenient method to select the contents of a Source Package.

Example:

Program(' src/ main_a.c')
Program(' src/ main_b.c")
Program(' main_c.c')

returns ["main_c.c', 'src/main_a.c', 'SConstruct', 'src/main_b.c']
Fi ndSour ceFi | es()

returns ['src/main_b.c', "src/main_a.c' |
Fi ndSour ceFil es('src')

Asyou can see build support files (SConstruct in the above example) will also be returned by this function.

Fl att en(sequence)

env.Fl att en(sequence)
Takes a sequence (that is, a Python list or tuple) that may contain nested sequences and returns a flattened list
containing all of the individual elementsin any sequence. This can be helpful for collecting the lists returned by
callsto Builders; other Builders will automatically flatten lists specified asinput, but direct Python manipulation
of these lists does not.

Examples:

f oo
bar

oj ect (' foo.c')
oj ect (' bar.c')

Because foo' and “bar' are lists returned by the Cbject() Builder,
“objects' will be a list containing nested |ists:

Iy
=== SCONS 85

Get

Get
env

objects = ['fl.0', foo, '"f2.0', bar, 'f3.0']

Passing such a list to another Builder is all right because
the Builder will flatten the |list automatically:
Pr ogram(source = obj ects)

If you need to mani pulate the list directly using Python, you need to
call Flatten() yourself, or otherw se handl e nested |ists:
for object in Flatten(objects):

print(str(object))

Bui | dFai | ures()
Returnsalist of exceptionsfor the actionsthat failed while attempting to build targets. Each element in the returned
listisaBui | dEr r or object with the following attributes that record various aspects of the build failure:

. node The node that was being built when the build failure occurred.

. st at us The numeric exit status returned by the command or Python function that failed when trying to build
the specified Node.

. errstr The SCons error string describing the build failure. (Thisis often a generic message like "Error 2" to
indicate that an executed command exited with a status of 2.)

. fil ename The name of the file or directory that actually caused the failure. This may be different from the
. node attribute. For example, if an attempt to build atarget named sub/ di r/ t ar get failsbecausethe sub/

di r directory could not be created, then the . node attribute will besub/ di r/t ar get butthe. fil ename
attribute will be sub/ di r .

. execut or The SCons Executor object for the target Node being built. This can be used to retrieve the
construction environment used for the failed action.

. acti on The actual SCons Action object that failed. This will be one specific action out of the possible list of
actions that would have been executed to build the target.

. command The actual expanded command that was executed and failed, after expansion of $TARGET,
$SOURCE, and other construction variables.

Notethat the Get Bui | dFai | ur es functionwill alwaysreturn an empty list until any build failure has occurred,
which meansthat Get Bui | dFai | ur es will awaysreturn an empty list whilethe SConscr i pt filesarebeing
read. Its primary intended use is for functions that will be executed before SCons exits by passing them to the
standard Python at exi t . r egi st er () function. Example:

i mport atexit

def print_build failures():
from SCons. Scri pt inport GetBuil dFail ures
for bf in GetBuildFailures():
print("% failed: %" % (bf.node, bf.errstr))

atexit.register(print_build fail ures)

Bui l dPath(file, [...])

.GetBuildPath(file, [...])

Returns the scons path name (or names) for the specified fi | e (or files). The specified f i | e or files may be
scons Nodes or strings representing path names.

~

'—‘-‘ SCONS 86

Get LaunchDi r ()
env.Get LaunchbDir ()

Returns the absol ute path name of the directory from which sconswasinitially invoked. This can be useful when
usingthe- u, - Uor - Doptions, which internally change to the directory in which the SConst r uct fileisfound.

Get Opt i on(nane)
env.Get Opt i on(nane)

This function provides a way to query the value of options which can be set via the command line or using the

Set Opt i on function.

nane can be an entry from the following table, which shows the corresponding command line arguments that
could affect the value. name can be also be the destination variable name from a project-specific option added
using the AddOpt i on function, aslong as the addition happens prior to the Get Opt i on call in the SConscript

files.

Query name Command-line options Notes

cache_debug --cache-debug

cache_di sabl e --cache-di sabl g, --no-
cache

cache_force --cache-force, --cache-
popul at e

cache_readonly --cache-readonly

cache_show --cache-show

cl ean -c,--cl ean,--renove

clinmb _up -D-U-u--up--search_up

config --config

debug - -debug

directory -C,--directory

di skcheck - -di skcheck

duplicate --duplicate

enabl e_virtual env --enabl e-virtual env

experi nent al - - experi nment al since4.2

file -f, --file, --makefile, --
sconstruct

hash_f or mat --hash-f or mat since 4.2

hel p

-h,--help

i gnore_errors

-i,--ignore-errors

i gnore_virtual env

--ignore-virtual env

implicit_cache

--inplicit-cache

i mplicit_deps_changed

--inmplicit-deps-changed

i mplicit_deps_unchanged |--inplicit-deps-
unchanged
i nclude_dir -1,--include-dir

i nstall _sandbox

--install -sandbox

Available only if thei nst al | tool
has been called

Iy
=== SCONS

87

Query name Command-line options Notes

keep_goi ng -k, - - keep-goi ng

max_drift --max-drift

md5_chunksi ze --hash-chunksi ze, --md5- |--hash-chunksi ze since4.2
chunksi ze

no_exec -n, --no-exec, --just-

print,--dry-run,--recon

no_progr ess

-Q

num j obs

-j,--jobs

package type

- - package-type

Available only if the packagi ng
tool has been called

profile_file

--profile

question

-g,--question

random

--random

repository

-Y,--repository,--srcdir

sil ent

-s,--silent,--quiet

site dir

--site-dir,--no-site-dir

stack_si ze

--stack-size

taskmastertrace_file

--taskmastertrace

tree_printers

--tree

war n

--warn, - -war ni ng

See the documentation for the corresponding command line option for information about each specific option.

d ob(pattern,

env.d ob(pattern,

[ondi sk,
[ondi sk,

source,

excl ude])
excl ude])

strings,

source, strings,

Returns Nodes (or strings) that match the specified patt ern, relative to the directory of the current
SConscri pt file. The evironment method form (env. G ob) performs string substition on patt er n and
returns whatever matches the resulting expanded pattern.

The specified pat t er n uses Unix shell style metacharacters for matching:

* mat ches ever yt hi ng

? mat ches any singl e character
[seq] mat ches any character in seq
[!seq] matches any char not in seq

If thefirst character of afilenameisadot, it must be matched explicitly. Character matches do not span directory

separators.

The d ob knows about repositories (see the Repository function) and source directories (see the
Var i ant Di r function) and returns a Node (or string, if so configured) in the local (SConscript) directory if a
matching Node is found anywhere in a corresponding repository or source directory.

Theondi sk argument may be set to a value which evaluates Fal se to disable the search for matches on disk,
thereby only returning matches among already-configured File or Dir Nodes. The default behavior is to return
corresponding Nodes for any on-disk matches found.

Iy
=== SCONS

88

The sour ce argument may be set to avalue which evaluates Tr ue to specify that, when the local directory isa
Var i ant Di r, the returned Nodes should be from the corresponding source directory, not the local directory.

Thest ri ngs argument may be set to a value which evaluates Tr ue to have the G ob function return strings,
not Nodes, that represent the matched files or directories. The returned strings will be relative to the local
(SConscript) directory. (Note that This may make it easier to perform arbitrary manipulation of file names, but if
the returned strings are passed to adifferent SConscr i pt file, any Node trandlation will be relative to the other
SConscri pt directory, not the original SConscr i pt directory.)

The excl ude argument may be set to a pattern or alist of patterns (following the same Unix shell semantics)
which must befiltered out of returned elements. Elements matching aleast one pattern of thislist will be excluded.

Examples:

Program"foo", dob("*.c"))

Zip("/tmp/everything", dob(".??*") + Gob("*"))

sources = G ob("*.cpp", exclude=["os_*_specific_*.cpp"]) + \
G ob("os_¥%_specific_*.cpp" % current 0S)

Hel p(t ext, append=Fal se)

env.Hel p(t ext, append=Fal se)

Specifiesalocal help messageto be printed if the- h argument isgiven to scons. Subsequent callsto Hel p append
t ext tothe previously defined local help text.

For the first call to Hel p only, if append is Fal se (the default) any local help message generated through
AddOpt i on callsisreplaced. If append isTr ue, t ext isappended to the existing help text.

| gnor e(t arget, dependency)
env.l gnor e(t arget, dependency)
The specified dependency file(s) will be ignored when deciding if the target file(s) need to be rebuilt.

You can also use | gnor e to remove a target from the default build. In order to do this you must specify the
directory the target will be built in as the target, and the file you want to skip building as the dependency.

Note that this will only remove the dependencies listed from the files built by default. It will still be built if that
dependency is needed by another object being built. See the third and forth examples below.

Examples:

env. |l gnore('foo', 'foo.c')
env.lgnore('bar', ['barl.h', '"bar2.h'])
env. lgnore('."', 'foobar.obj')

env. Il gnore(' bar', 'bar/foobar.obj"')

| nport (vars...)

env.l nport (vars...)

Imports variables into the current SConscript file. var s must be strings representing names of variables which
have been previously exported either by the Export function or by the expor t s argument to SConscri pt .
Variables exported by SConscri pt take precedence. Multiple variable names can be passed to | nport as
separate arguments or as words in a space-separated string. Thewildcard " * " can be used to import all available
variables.

Examples:

Iy
=== SCONS 89

| mport ("env")

| mport ("env", "variable")
| mport (["env", "variable"])
[mport ("*")

Literal (string)
env.Literal (string)
The specified st r i ng will be preserved as-is and not have construction variables expanded.

Local (t argets)

env.Local (t argets)
The specified t ar get s will have copies made in the local tree, even if an aready up-to-date copy existsin a
repository. Returns alist of the target Node or Nodes.

env.Mer geFl ags(arg, [unique])
Merges values from ar g into construction variables in the current construction environment. If ar g is not a
dictionary, it is converted to one by calling env. Par seFl ags on the argument before the values are merged.
Note that ar g must be a single value, so multiple strings must be passed in as a list, not as separate arguments
toenv. Mer geFl ags.

If uni que is true (the default), duplicate values are not stored. When eliminating duplicate values, any
construction variables that end with the string PATH keep the left-most unique value. All other construction
variables keep the right-most unique value. If uni que isfalse, values are added even if they are duplicates.

Examples:

Add an optinization flag to $CCFLAGS.
env. Mer geFl ags(' - 33')

Conbi ne the flags returned fromrunni ng pkg-config with an optim zation
flag and nerge the result into the construction vari abl es.
env. MergeFl ags([' ! pkg-config gtk+-2.0 --cflags', '-Q3'])

Combi ne an optimzation flag with the flags returned fromrunni ng pkg-config
twice and nmerge the result into the construction vari abl es.
env. Mer geFl ags(

[

e
"I pkg-config gtk+-2.0 --cflags --libs',
"I pkg-config |ibpngl2 --cflags --1ibs',
]
)
NoCache(t arget, ...)
env.NoCache(target, ...)

Specifies a list of files which should not be cached whenever the CacheDi r method has been activated. The
specified targets may be alist or an individual target.

Multiple files should be specified either as separate arguments to the NoCache method, or as alist. NoCache
will also accept the return value of any of the construction environment Builder methods.

Calling NoCache on directories and other non-File Node types has no effect because only File Nodes are cached.

Examples:

Iy
=== SCONS 90

NoCache(' foo. el f')
NoCache(env. Progran{' hell o', "hello.c'))

NoCl ean(target, ...)

env.Nod ean(target, ...)
Specifies alist of files or directories which should not be removed whenever the targets (or their dependencies)
are specified with the- ¢ command line option. The specified targets may bealist or anindividual target. Multiple
calsto NoCl ean arelegal, and prevent each specified target from being removed by callsto the - ¢ option.

Multiple files or directories should be specified either as separate argumentsto the NoCl ean method, or asalist.
NoCl ean will also accept the return value of any of the construction environment Builder methods.

CallingNoCl ean for atarget overridescallingCl ean for the sametarget, and any targets passed to both functions
will not be removed by the - ¢ option.

Examples:

NoCl ean(' foo. el f')
NoCl ean(env. Progran(' hello', '"hello.c"))

env.Par seConfi g(command, [function, unique])
Updates the current construction environment with the values extracted from the output of running external
conmand, by passing it to a helper f unct i on. command may be a string or alist of strings representing the
command anditsarguments. If f unct i onisomittedor None, env. Mer geFl ags isused. By default, duplicate
values are not added to any construction variables; you can specify uni que=Fal se to allow duplicate values
to be added.

command is executed using the SCons execution environment (that is, the construction variable $ENV in
the current construction environment). If command needs additional information to operate properly, that
needs to be set in the execution environment. For example, pkg-config may need a custom value set in the
PKG_CONFI G_PATH environment variable.

env. Mer geFl ags needs to understand the output produced by conmand in order to distribute it to
appropriate construction variables. env. Mer geFl ags uses a separate function to do that processing - see
env. Par seFl ags for the details, including a a table of options and corresponding construction variables. To
provide aternative processing of the output of conmand, you can suppply a custom f unct i on, which must
accept three arguments: the construction environment to modify, a string argument containing the output from
running comand, and the optional uni que flag.

Par seDepends(fi | enanme, [nust_exist, only_one])

env.Par seDepends(fi | enane, [rnust_exist, only_one])
Parsesthecontentsof f i | enane asalist of dependenciesinthe style of Make or mkdep, and explicitly establishes
all of the listed dependencies.

By default, it isnot an error if f i | enane does not exist. The optional nust _exi st argument may be set to
Tr ue to have SConsraise an exception if the file does not exist, or is otherwise inaccessible.

The optional onl y_one argument may be set to Tr ue to have SCons raise an exception if the file contains
dependency information for more than one target. This can provide a small sanity check for files intended to be
generated by, for example, thegcc - Mflag, which should typically only write dependency information for one
output fileinto a corresponding . d file.

fil enane and al of thefileslisted therein will be interpreted relative to the directory of the SConscr i pt file
which callsthe Par seDepends function.

Iy
=== SCONS 91

env

ParseFl ags(fl ags, ...)

Parses one or more strings containing typica command-line flags for GCC-style tool chains and returns a
dictionary with the flag values separated into the appropriate SCons construction variables. Intended as a
companiontotheenv. Mer geFl ags method, but allowsfor the valuesin the returned dictionary to be modified,
if necessary, before merging them into the construction environment. (Note that env. Mer geFl ags will call
this method if its argument is not adictionary, so it is usually not necessary to call env. Par seFl ags directly
unless you want to manipulate the values.)

If the first character in any string is an exclamation mark (!), the rest of the string is executed as a command,
and the output from the command is parsed as GCC tool chain command-line flags and added to the resulting
dictionary. This can be used to call a*- conf i g command typical of the POSIX programming environment
(for example, pkg-config). Note that such a comamnd is executed using the SCons execution environment; if
the command needs additional information, that information needs to be explcitly provided. See Par seConfi g
for more details.

Flag values are translated accordig to the prefix found, and added to the following construction variables:

-arch CCFLAGS, LI NKFLAGS
-D CPPDEFI NES

- framewor k FRAMEVWORKS

- framewor kdi r = FRAMVEVWORKPATH
-fmerge-al |l -constants CCFLAGS, LI NKFLAGS
- fopennp CCFLAGS, LI NKFLAGS
-incl ude CCFLAGS

-1 macr os CCFLAGS

-i sysr oot CCFLAGS, LI NKFLAGS
-isystem CCFLAGS

-iquote CCFLAGS

-idirafter CCFLAGS

- CPPPATH

- LI BS

-L LI BPATH

- Mo- cygw n CCFLAGS, LI NKFLAGS
- mav ndows LI NKFLAGS

- opennp CCFLAGS, LI NKFLAGS
- pt hread CCFLAGS, LI NKFLAGS
-std= CFLAGS

- W, ASFLAGS, CCFLAGS
-W, -rpat h= RPATH

-W, -R RPATH

-W, -R RPATH

-W, LI NKFLAGS

- W, CPPFLAGS

- CCFLAGS

+ CCFLAGS, LI NKFLAGS

Any other strings not associated with options are assumed to be the names of libraries and added to the $LI BS
construction variable.

Examples (all of which produce the same result):

di ct
di ct

env. ParseFl ags(' -2 -Df oo -Dbar=1")
env. ParseFl ags('-O2', '-Dfoo', '-Dbar=1")

~

'—‘-‘ SCONS 92

di ct
di ct

= env. ParseFlags(['-O2', '-Dfoo -Dbar=1'])

= env. ParseFl ags('-O2', 'lecho -Dfoo -Dbar=1")

Pl at f or m(pl at)

env.Pl at f or m(pl at)
When called as a global function, returns a callable platform object selected by pl at (defaults to the detected
platform for the current system) that can be used to initialize a construction environment by passing it as the
pl at f or mkeyword argument to the Envi r onnent function.

Example:

env = Environment (pl atf orm=Pl at f or n{' wi n32'))

When called as a method of an environment, calls the platform object indicated by pl at to update that
environment.

env. Pl at f or n{' posi x")
See the manpage section "Construction Environments' for more details.

Preci ous(target, ...)

env.Precious(target, ...)
Marks each given t ar get as precious o it is not deleted before it is rebuilt. Normally scons deletes a target
before building it. Multiple targets can be passed into asingle call to Pr eci ous.

env.Prepend(key=val, [...])
Prepend values to construction variables in the current construction environment, Workslikeenv. Append (see
for details), except that values are added to the front, rather than the end, of any existing value of the construction
variable

Example:

env. Prepend(CCFLAGS="'-g ', FOO=['fo00.yyy'])
Seeasoenv. Append, env. AppendUni que and env. Pr ependUni que.

env.PrependENVPat h(nanme, newpath, [envnane, sep, del ete_existing=True])

Prepend path elements specified by newpat h to the given search path string or list name in mapping envnane
in the construction environment. Supplying envnane isoptional: thedefault i sthe execution environment SENV.
Optional sep is used as the search path separator, the default is the platform's separator (0s. pat hsep). A path
element will only appear once. Any duplicatesin newpat h are dropped, keeping the first appearing (to preserve
path order). If del et e_exi sti ng is Fal se any addition duplicating an existing path element is ignored;
if del et e_exi sting isTrue (the default) the existing value will be dropped and the path element will be
inserted at the beginning. To help maintain uniqueness all paths are normalized (using os. pat h. nor npat h
and os. pat h. nor ntase).

Example:

print('before:', env['ENV][' 1 NCLUDE])

i ncl ude_path = *'/foo/bar:/foo'

env. PrependENVPat h(' | NCLUDE' , i ncl ude_pat h)
print('after:", env['ENV][' I NCLUDE])

Iy
=== SCONS 93

Yields:

bef ore: /biz:/foo
after: /fool/bar:/foo:/biz

See also env. AppendENVPat h.

env.PrependUni que(key=val , del ete_existing=False, [...])
Prepend values to construction variables in the current construction environment, maintaining uniqueness. Works
likeenv. Append (seefor details), except that values are added to the front, rather than the end, of any existing
value of the construction variable, and values already present in the construction variable will not be added again.
If del et e_exi sti ngisTr ue, theexisting matching valueisfirst removed, and the requested valueisinserted,
having the effect of moving such valuesto the front.

Example:

env. PrependUni que(CCFLAGS='-g', FOO=['foo0.yyy'])
Seeasoenv. Append, env. AppendUni que and env. Pr epend.

Progress(cal l able, [interval])

Progress(string, [interval, file, overwite])

Progress(list_of _strings, [interval, file, overwite])
Allows SConsto show progress made during the build by displaying astring or calling afunction while evaluating
Nodes (e.g. files).

If the first specified argument is a Python callable (a function or an object that hasa ___cal | __ method), the
functionwill becalledonceeveryi nt er val timesaNodeisevaluated (default 1). Thecallablewill be passed the
evaluated Node asitsonly argument. (For future compatibility, it'sagood ideatoaso add * ar gs and * * kwar gs
as arguments to your function or method signatures. This will prevent the code from breaking if SCons ever
changes the interface to call the function with additiona argumentsin the future.)

An example of asimple custom progress function that prints a string containing the Node name every 10 Nodes:

def ny_progress _function(node, *args, **kwargs):
print (' Eval uati ng node %!' % node)
Progress(my_progress_function, interval =10)

A more complicated example of acustom progress display object that prints astring containing a count every 100
evaluated Nodes. Notetheuseof \ r (acarriagereturn) at the end so that the string will overwriteitself onadisplay:

i mport sys
cl ass ProgressCount er (obj ect):
count = 0
def _ call__(self, node, *args, **kw):

sel f.count += 100
sys.stderr.wite('Eval uated % nodes\r' % sel f.count)

Progress(ProgressCounter(), interval =100)

If thefirst argument to Pr ogr ess isastring or list of strings, it istaken astext to be displayed every i nt er val
evaluated Nodes. If the first argument is alist of strings, then each string in the list will be displayed in rotating
fashion every i nt er val evaluated Nodes.

Iy
=== SCONS 94

The default is to print the string on standard output. An alternate output stream may be specified withthefi | e
keyword argument, which the caller must pass already opened.

The following will print a series of dots on the error output, one dot for every 100 evaluated Nodes:

i mport sys
Progress('.', interval =100, fil e=sys.stderr)

If the string contains the verbatim substring $TARGET; , it will be replaced with the Node. Note that, for
performance reasons, this is not a regular SCons variable substition, so you can not use other variables or use
curly braces. The following example will print the name of every evaluated Node, using a carriage return) (\ r)
to cause each line to overwritten by the next line, and the over wr i t e keyword argument (default Fal se) to
make sure the previously-printed file name is overwritten with blank spaces:

i mport sys
Progress(' $TARCGET\r', overw ite=True)

A list of strings can be used to implement a" spinner" on the user's screen asfollows, changing every five evaluated

Nodes:

Progress(['-\r", "\\\r', "|\r"', "/\r'], interval =5)
Pseudo(target, ...)
env.Pseudo(target, ...)

This indicates that each givent ar get should not be created by the build rule, and if the target is created, an
error will be generated. Thisis similar to the gnu make .PHONY target. However, in the vast majority of cases,
an Al i as is more appropriate. Multiple targets can be passed in to asingle call to Pseudo.

PyPackageDi r (modul enane)

env.PyPackageDi r (modul enane)
ThisreturnsaDirectory Node similar to Dir. The python module/ packageislooked up and if located the directory
is returned for the location. modul enarme Is a named python package / module to lookup the directory for it's
location.

If modul enane isalist, SConsreturnsalist of Dir nodes. Construction variablesareexpandedinnodul enane.

env.Repl ace(key=val, [...])
Replaces construction variables in the Environment with the specified keyword arguments.

Example:

env. Repl ace(CCFLAGS=' -g', FOO=' f 00. xxx")

Reposi t ory(di rect ory)

env.Reposi tory(di rectory)
Specifiesthat di r ect ory isarepository to be searched for files. Multiple callsto Reposi t or y arelegal, and
each one adds to the list of repositories that will be searched.

To scons, arepository isacopy of the source tree, from the top-level directory on down, which may contain both
sourcefilesand derived filesthat can be used to build targetsin thelocal sourcetree. The canonical examplewould
be an officia sourcetree maintained by an integrator. If the repository contains derived files, then the derived files
should have been built using scons, so that the repository contains the necessary signature information to allow
sconsto figureout when it isappropriate to usetherepository copy of aderivedfile, instead of building onelocally.

Iy
=== SCONS 95

Note that if an up-to-date derived file aready exists in a repository, scons will not make a copy in the local
directory tree. In order to guarantee that alocal copy will be made, usethe Local method.

Requi res(target, prerequisite)

env.Requi res(target, prerequisite)
Specifies an order-only relationship between the specified target file(s) and the specified prerequisite file(s). The
prerequisite file(s) will be (re)built, if necessary, before the target file(s), but the target file(s) do not actually
depend on the prerequisites and will not be rebuilt simply because the prerequisite file(s) change.

Example:
env. Requires('foo', 'file-that-nust-be-built-before-foo')
Return([vars..., stop=True])

Return to the calling SConscript, optionally returning the values of variables named in var s. Multiple strings
contaning variable names may be passed to Ret ur n. A string containing white space is split into individual
variable names. Returns the value if one variable is specified, else returns a tuple of values. Returns an empty
tupleif var s is omitted.

By default Ret ur n stops processing the current SConscript and returnsimmediately. Theoptional st op keyword
argument may be set to a false value to continue processing the rest of the SConscript file after the Ret ur n
call (this was the default behavior prior to SCons 0.98.) However, the values returned are still the values of the
variablesin the named var s at the point Ret ur n was called.

Examples:
Returns no val ues (eval uates Fal se)
Ret urn()

Returns the value of the 'foo' Python vari able.
Return("foo")

Returns the values of the Python variables 'foo’ and 'bar'.
Return("foo", "bar")

Returns the val ues of Python variables 'vall and 'val2'.
Return('val 1 val 2")

Scanner (functi on, [nane, ar gunent , skeys, pat h_functi on, node cl ass,
node factory, scan_check, recursive])
env.Scanner (f uncti on, [nane, ar gunent , skeys, pat h_functi on, node cl ass,

node factory, scan_check, recursive])
Creates a Scanner object for the specified f unct i on. See manpage section "Scanner Objects’ for a complete
explanation of the arguments and behavior.

SConscri pt (scripts, [exports, variant_dir, duplicate, must_exist])
env.SConscri pt(scripts, [exports, variant_dir, duplicate, nust_exist])
SConscri pt (di rs=subdi rs, [nane=scriptnanme, exports, variant_dir, duplicate,
must _exi st])
env.SConscri pt (di rs=subdirs, [name=scriptnane, exports, variant_dir, duplicate,
must _exi st])
Executes one or more subsidiary SConscript (configuration) files. There are two waysto call the SConscr i pt
function.

Iy
=== SCONS 96

Thefirst caling style is to supply one or more SConscript file names as the first (positional) argument. A single
script may be specified as a string; multiple scripts must be specified as a list of strings (either explicitly or as
created by afunction like Spl i t). Examples:

SConscri pt (' SConscript') # run SConscript in the current directory
SConscri pt (' src/ SConscript') # run SConscript in the src directory
SConscript (['src/ SConscript', 'doc/SConscript'])

config = SConscript (' MyConfig.py')

The other calling style is to omit the positional argument naming scripts and instead specify a list of directory
names using the di r s keyword argument. In this case, scons will execute a subsidiary configuration file named
SConscri pt in each of the specified directories. You may specify a name other than SConscri pt by
supplying an optional narme=scr i pt nane keyword argument. The first three examples below have the same
effect as the first three examples above:

SConscript(dirs=".") # run SConscript in the current directory
SConscript(dirs="src') # run SConscript in the src directory
SConscript(dirs=['src', 'doc'])

SConscri pt (di rs=['subl', 'sub2'], name='MySConscript')

The optional export s keyword argument provides a string or list of strings representing variable names, or
a dictionary of named values, to export. For the first calling style only, a second positional argument will be
interpreted as export s; the second calling style must use the keyword argument form for exports. These
variables are locally exported only to the called SConscript file(s) and do not affect the global pool of variables
managed by the Export function. The subsidiary SConscript files must usethe | npor t function to import the
variables. Examples:

foo = SConscri pt (' sub/ SConscript', exports='env')

SConscript (' dir/SConscript', exports=['env', 'variable'])
SConscri pt (dirs="subdir', exports='env variable')
SConscript(dirs=['one', "two', 'three'], exports='shared_ info')

If theoptional var i ant _di r argument is present, it causes an effect equivalent tothe Var i ant Di r function,
but in effect only within the scope of the SConscri pt cal. Thevari ant _di r argumentisinterpreted relative
to the directory of the calling SConscript file. The source directory isthe directory in which the called SConscript
file resides and the SConscript fileis evaluated asif it wereinthevari ant _di r directory. Thus:

SConscri pt (' src/ SConscript', variant_dir="build")
is equivaent to:

VariantDir('build , "src')

SConscri pt (' bui | d/ SConscri pt')

If the sources are in the same directory asthe SConst r uct ,

SConscri pt (' SConscript', variant_dir="build")

is equivaent to:

Iy
=== SCONS 97

VariantDir("build , '.")
SConscri pt (' bui | d/ SConscri pt')

The optional dupl i cat e argument is interpreted as for Vari ant Di r. If the vari ant _di r argument is
omitted, the dupl i cat e argument is ignored. See the description of Var i ant Di r for additional details and
restrictions.

If the optional nust _exi st is Tr ue, causes an exception to be raised if a requested SConscript file is not
found. The current default is Fal se, causing only awarning to be emitted, but this default is deprecated (since
3.1). For scripts which truly intend to be optional, transition to explicitly supplying nust _exi st =Fal se to
the SConscri pt cal.

Here are some composite examples:

collect the configuration information and use it to build src and doc
shared_i nfo = SConscript (' MConfig. py')

SConscri pt (' src/ SConscript', exports='shared_info')

SConscri pt (' doc/ SConscri pt', exports='shared info')

bui |l d debuggi ng and production versions. SConscri pt

can use Dir('.").path to determ ne vari ant.

SConscri pt (' SConscript', variant_dir="debug', duplicate=0)
SConscri pt (' SConscript', variant_dir="prod , duplicate=0)

buil d debuggi ng and production versions. SConscri pt
is passed flags to use.

opts = { ' CPPDEFINES' : ['DEBUG], 'CCFLAGS : '-pgdb' }
SConscri pt (' SConscript', variant _dir="debug', duplicate=0, exports=opts)
opts = { 'CPPDEFINES' : ['NODEBUG], 'CCFLAGS : '-0O }

SConscri pt (' SConscript', variant _dir="prod' , duplicate=0, exports=opts)

build comon docunentation and conpile for different architectures
SConscri pt (' doc/ SConscript', variant _dir="buil d/ doc', duplicate=0)
SConscri pt (' src/ SConscript', variant _dir="build/ x86"', duplicate=0)
SConscri pt (' src/ SConscript', variant _dir="build/ ppc', duplicate=0)

SConscri pt returns the values of any variables named by the executed SConscript file(s) in arguments to the
Ret ur n function. If asingle SConscr i pt call causes multiple scriptsto be executed, thereturn valueisatuple
containing the returns of each of the scripts. If an executed script does not explicitly call Ret ur n, it returnsNone.

SConscri pt Chdi r (val ue)

env.SConscri pt Chdi r (val ue)
By default, scons changes its working directory to the directory in which each subsidiary SConscript file lives.
This behavior may be disabled by specifying either:

SConscri pt Chdi r (0)
env. SConscr i pt Chdi r (0)

inwhich case sconswill stay in the top-level directory whilereading all SConscript files. (This may be necessary
when building from repositories, when all the directoriesin which SConscript filesmay be found don't necessarily
exist locally.) Y ou may enable and disable this ability by calling SConscr i pt Chdi r multiple times.

Iy
=== SCONS 98

Example:

env = Environnent ()

SConscri pt Chdi r (0)

SConscript (' foo/ SConscript') # will not chdir to foo
env. SConscri pt Chdir (1)

SConscri pt (' bar/ SConscript') # will chdir to bar

SConsi gnFi | e([namre, dbm nodul e])

env.SConsi gnFi | e([nane, dbm nodul e])
Specify where to store the SCons file signature database, and which database format to use. This may be useful
to specify aternate database files and/or file locations for different types of builds.

The optional nane argument is the base name of the database file(s). If not an absolute path name, these are
placed relative to the directory containing the top-level SConst ruct file. The default is . sconsi gn. The
actual database file(s) stored on disk may have an appropriate suffix appended by the chosen dbm nodul e

Theoptional dbm _nodul e argument specifies which Python database module to use for reading/writing thefile.
The module must be imported first; then the imported module name is passed as the argument. The default is a
custom SCons. dbl i t e module that uses pickled Python data structures, which works on all Python versions.
See documentation of the Python dbmmodule for other available types.

If called with no arguments, the database will defaultto. sconsi gn. dbl i t e inthetop directory of the project,
which is also the default if if SConsi gnFi | e isnot called.

The setting is global, so the only difference between the global function and the environment method form is
variable expansion on nane. There should only be one active call to this function/method in a given build setup.

If name is set to None, sconswill store file signatures in a separate . sconsi gn filein each directory, notin a
single combined database file. Thisis abackwards-compatibility meaure to support what was the default behavior
prior to SCons 0.97 (i.e. before 2008). Use of this mode is discouraged and may be deprecated in a future SCons
release.

Examples:

Explicitly stores signatures in ".sconsign.dblite"
in the top-level SConstruct directory (the default behavior).
SConsi gnFi | e()

Stores signatures in the file "etc/scons-signatures”
relative to the top-Ilevel SConstruct directory.

SCons will add a database suffix to this nane.
SConsi gnFi | e("et c/ scons-si gnat ures")

Stores signatures in the specified absolute file nane.
SCons will add a database suffix to this nane.
SConsi gnFi | e("/ hone/ ne/ SCons/ si gnat ur es")

Stores signatures in a separate .sconsign file
in each directory.
SConsi gnFi | e(None)

Stores signatures in a GNU dom format .sconsign file
i mport dbm gnu

Iy
=== SCONS 99

SConsi gnFi | e(dbm nodul e=dbm gnu)

env.Set Def aul t (key=val, [...])
Sets construction variables to default values specified with the keyword arguments if (and only if) the variables
are not already set. The following statements are equivalent:

env. Set Def aul t (FOO=' f 00")
if "FOO not in env:
env[' FOO] = 'foo'

Set Opti on(nane, val ue)

env.Set Opt i on(nane, val ue)
Sets scons option variable nane to val ue. These options are al also settable via command-line options but the
variable name may differ from the command-line option name - see the table for correspondences. A value set
via command-line option will take precedence over one set with Set Opt i on, which allows setting a project
default in the scripts and temporarily overriding it via command line. Set Opt i on calls can aso be placed in
thesite_init. py file

See the documentation in the manpage for the corresponding command line option for information about each
specific option. The val ue parameter is mandatory, for option values which are boolean in nature (that is, the
command line option does not take an argument) use aval ue which evaluates to true (e.g. Tr ue, 1) or fase
(eg. Fal se, 0).

Options which affect the reading and processing of SConscript files are not settable using Set Opt i on since
those files must be read in order to find the Set Opt i on call in the first place.

The settable variables with their associated command-line options are:

Settable name Command-line options Notes

cl ean -c,--cl ean,--renove

di skcheck - -di skcheck

duplicate --duplicate

experi nent al - -experinment al since 4.2

hash_chunksi ze - - hash- chunksi ze Actually sets md5_chunksi ze.
since4.2

hash_f or nmat --hash-f or nat since 4.2

hel p -h,--help

i mplicit_cache --inmplicit-cache

i nplicit_deps_changed --inplicit-deps-changed |Also sets inplicit_cache.
(settable since 4.2)

implicit_deps_unchanged |--inplicit-deps- Also sets inplicit_cache.

unchanged (settable since 4.2)

max_drift --max-drift

md5_chunksi ze - -md5- chunksi ze

no_exec -n, --no-exec, --just-

print,--dry-run,--recon
no_progress -Q See?
num j obs -j,--jobs

Iy
=== SCONS 100

Si d
env

Spl
env

env

Settable name Command-line options Notes
random --random

si |l ent -s,--silent,--quiet

stack_si ze --stack-si ze

war n --warn

8f no_progr ess isset viaSet Opt i on in an SConscript file (but not if setinasi t e_i ni t . py file) there will still be an initial status
message about reading SConscript files since SCons has to start reading them before it can see the Set Opt i on.

Example:

Set Option(' max_drift', 0)

eEf fect (si de_effect, target)

.Si deEf f ect (si de_effect, target)

Declaressi de_ef f ect asasideeffect of buildingt ar get . Bothsi de_ef f ect andt ar get canbealist,
afile name, or anode. A side effect is a target file that is created or updated as a side effect of building other
targets. For example, a Windows PDB fileis created as a side effect of building the .obj files for a static library,
and various log files are created updated as side effects of various TeX commands. If atarget is a side effect of
multiple build commands, scons will ensure that only one set of commands is executed at a time. Consequently,
you only need to use this method for side-effect targets that are built as a result of multiple build commands.

Because multiple build commands may update the same side effect file, by default the si de_ef f ect target
is not automatically removed when the t ar get is removed by the - ¢ option. (Note, however, that the
si de_ef f ect might be removed as part of cleaning the directory in which it lives.) If you want to make sure
thesi de_ef f ect iscleaned whenever aspecifict ar get is cleaned, you must specify this explicitly with the
Cl ean or env. C ean function.

This function returns the list of side effect Node objects that were successfully added. If the list of side effects
contained any side effects that had already been added, they are not added and included in the returned list.

it(arg)

Split(arg)

If ar g is astring, splits on whitespace and returns a list of strings without whitespace. This mode is the most
common case, and can be used to split alist of filenames (for example) rather than having to type them as alist of
individually quoted words. If ar g isalist or tuplereturnsthe list or tuple unchanged. If ar g is any other type of
object, returns a list containing just the object. These non-string cases do not actually do any spliting, but allow
an argument variable to be passed to Spl i t without having to first check its type.

Example:
files = Split("fl.c f2.c f3.c")
files = env.Split("fd4.c f5.¢c f6.c")
files = Split("""
f7.c
f8.c
f9.c
")
.Subst (i nput, [raw, target, source, conv])

Performs construction variable interpolation (substitution) on i nput , which can be a string or a sequence.
Substitutable elements take the form ${ expr essi on}, athough if there is no ambiguity in recognizing the
element, the braces can be omitted. A literal $ can be entered by using $3.

~

'—‘—' SCONS 101

By default, leading or trailing white space will be removed from the result, and all sequences of white space will
be compressed to asingle space character. Additionally, any $(and$) character sequenceswill be stripped from
the returned string, The optional r aw argument may be set to 1 if you want to preserve white space and $(-$)
sequences. The r aw argument may be set to 2 if you want to additionally discard all characters between any $(
and $) pairs (asisdone for signature calculation).

If i nput isasequence (list or tuple), the individual elements of the sequence will be expanded, and the results
will bereturned asalist.

The optional t ar get and sour ce keyword arguments must be set to lists of target and source nodes,
respectively, if you want the $TARGET, $TARCETS, $SOURCE and $SOURCES to be available for expansion.
Thisisusually necessary if you are calling env. subst from within a Python function used as an SCons action.

Returned string values or sequence elements are converted to their string representation by default. The optional
conv argument may specify a conversion function that will be used in place of the default. For example, if you
want Python objects (including SCons Nodes) to be returned as Python objects, you can use a Python lambda
expression to pass in an unnamed function that simply returns its unconverted argument.

Example:

print (env. subst("The C conpiler is: $CC'))

def conpile(target, source, env):
sourceDir = env. subst (
"${SOURCE. srcdir}",
t ar get =t ar get ,
sour ce=sour ce

)
sour ce_nodes = env. subst (' $EXPAND _TO NODELI ST', conv=l anbda x: x)

Tag(node, tags)
Annotates file or directory Nodes with information about how the Package Builder should package those files
or directories. All Node-level tags are optional.

Examples:

makes sure the built library will be installed with 644 file access node
Tag(Library('lib.c'), UN X _ATTR="00644")

marks file2.txt to be a docunentation file
Tag('file2.txt', DOC)

Tool (nanme, [tool path, **kwargs])

env.Tool (nane, [tool path, **kwargs])
L ocates the tool specification module name and returns a callable tool object for that tool. The tool module is
searched for in standard locations and in any paths specified by the optional t ool pat h parameter. The standard
locations are SCons own internal path for tools plus the toolpath, if any (see the Tools section in the manual
page for more details). Any additional keyword arguments kwar gs are passed to the tool module'sgener at e
function during tool object construction.

When called, the tool object updates a construction environment with construction variables and arranges any
other initialization needed to use the mechanisms that tool describes.

Iy
=== SCONS 102

When theenv. Tool formisused, thetool object isautomatically called to update env and the value of t ool
is appended to the $TOOLS construction variable in that environment.

Examples:

env. Tool (' gcc')
env. Tool (" opengl', tool path=["build/tools'])

When the global function Tool formisused, thetool object isconstructed but not called, asit lacks the context of
an environment to update. Thetool object can bepassedtoan Envi r onnent or Cl one call aspart of thet ool s
keyword argument, in which case the tool is applied to the environment being constructed, or it can be called
directly, in which case a construction environment to update must be passed as the argument. Either approach will
also update the $TOOLS construction variable.

Examples:

env = Environment (tool s=[Tool (' msvc')])

env = Environment ()

msvct ool = Tool (' msvc')

msvct ool (env) # adds 'nsvc' to the TOOLS vari abl e
gltool = Tool (' opengl', toolpath = ['"tools'])
gltool (env) # adds 'opengl' to the TOOLS vari abl e

Changed in SCons4.2; env. Tool now returnsthetool object, previously it did not return (i.e. returned None).

Val ue(val ue, [built_value], [nane])

env.Val ue(val ue, [built_value], [nane])
Returns a Node object representing the specified Python value. Value Nodes can be used as dependencies
of targets. If the result of calling str(val ue) changes between SCons runs, any targets depending on
Val ue(val ue) will berebuilt. (Thisistrue even when using timestamps to decideif files are up-to-date.) When
using timestamp source signatures, Value Nodes' timestamps are equal to the system time when the Node is
created. nane can be provided as an alternative name for the resulting Val ue node; thisisadvised if theval ue
parameter can't be converted to a string.

The returned Value Node object hasawr i t e() method that can be used to "build" a Value Node by setting a
new value. The optional bui | t _val ue argument can be specified when the Value Node is created to indicate
the Node should already be considered "built." Thereis a corresponding r ead() method that will return the built
value of the Node.

Examples:

env = Environment ()

def create(target, source, env):
A function that will wite a 'prefix=$SOURCE
string into the file name specified as the
$TARCET.
with open(str(target[0]), 'wb') as f:
f.wite('prefix=" + source[0].get _contents())

Fetch the prefix= argunent, if any, fromthe comuand
line, and use /usr/local as the default.
prefix = ARGUVENTS. get (' prefix', '/usr/local")

Iy
=== SCONS 103

Attach a .Config() builder for the above function action

to the construction environnent.

env[' BU LDERS][' Config'] = Builder(action = create)

env. Config(target = 'package-config', source = Val ue(prefix))

def build_val ue(target, source, env):
A function that "builds" a Python Value by updating
the Python value with the contents of the file
specified as the source of the Builder call ($SOURCE).
target[0] .wite(source[0].get_contents())

out put = env. Val ue(' before')
i nput = env. Value('after"')

Attach a .UpdateVal ue() builder for the above function

action to the construction environnent.

env[' BUI LDERS'][' Updat eVal ue'] = Buil der(action = build_val ue)
env. Updat eVal ue(target = Val ue(output), source = Val ue(input))

VariantDir(variant _dir, src_dir, [duplicate])

env.VariantDir(variant _dir, src_dir, [duplicate])
Sets up a mapping to define a variant build directory in vari ant _dir. src_dir may not be underneath
variant _dir. A Variant Dir mapping is global, even if caled using the env. Vari ant Di r form.
Vari ant Di r canbecalled multipletimeswiththesamesr c_di r toset up multiplevariant buildswith different
options.

Note if vari ant _di r isnot under the project top directory, target selection rules will not pick targets in the
variant directory unless they are explicitly specified.

When filesinvari ant _di r are referenced, SCons backfills as needed with files from sr¢c_di r to create a
complete build directory. By default, SCons physically duplicates the source files, SConscript files, and directory
structure as needed into the variant directory. Thus, abuild performed in the variant directory is guaranteed to be
identical to a build performed in the source directory even if intermediate source files are generated during the
build, or if preprocessors or other scanners search for included files using paths relative to the source file, or if
individual compilers or other invoked tools are hard-coded to put derived files in the same directory as source
files. Only the files SCons calculates are needed for the build are duplicated into var i ant _di r . If possible on
the platform, the duplication is performed by linking rather than copying. This behavior is affected by the - -
dupl i cat e command-line option.

Duplicating the source files may be disabled by setting the dupl i cat e argument to Fal se. This will cause
SCons to invoke Builders using the path names of source filesin src_di r and the path names of derived
files within vari ant _di r. This is more efficient than duplicating, and is safe for most builds; revert to
dupl i cat e=Tr ue if it causes problems.

Vari ant Di r works most naturally when used with a subsidiary SConscript file. The subsidiary SConscript
file must be called as if it were in vari ant _di r, regardless of the value of dupl i cat e. When calling
an SConscript file, you can use the export s keyword argument to pass parameters (individualy or as an
appropriately set up environment) so the SConscript can pick up the right settings for that variant build. The
SConscript must | npor t theseto use them. Example:

envl
env2

Envi ronnent (...settings for variantl...)
Envi ronnent (...settings for variant2...)

Iy
=== SCONS 104

run src/SConscript in two variant directories

VariantDir (" build/variantl', 'src')
SConscri pt (' bui l d/vari ant 1/ SConscript', exports={"env": envl})
VariantDir (" build/variant2', "src')

SConscri pt (' bui l d/ vari ant 2/ SConscript', exports={"env": env2})

See aso the SConscri pt function for another way to specify a variant directory in conjunction with calling
asubsidiary SConscript file.

More examples:

use nanes in the build directory, not the source directory
VariantDir('build , 'src', duplicate=0)
Program(' bui |l d/ prog', 'build/source.c')

this builds both the source and docs in a separate subtree
VariantDir("build , '.', duplicate=0)
SConscri pt (dirs=["build/src'," build/doc'])

same as previous exanple, but only uses SConscri pt
SConscript(dirs="src', variant_dir="build/src', duplicate=0)
SConscri pt (di rs="doc', variant_dir=" build/doc', duplicate=0)

Wer el s(program [path, pathext, reject])
env.\Wher el s(program [path, pathext, reject])
Searches for the specified executable pr ogr am returning the full path to the program or None.

When called as a construction environment method, searches the paths in the pat h keyword argument, or if
None (the default) the paths listed in the construction environment (env[' ENV'] [' PATH]). The externa
environment's path list (0s. envi ron[' PATH]) isused as a falback if the key env[' ENV'][' PATH]
does not exist.

On Windows systems, searches for executable programs with any of the file extensions listed in
the pat hext keyword argument, or if None (the default) the pathname extensions listed in the
construction environment (env[' ENV'][' PATHEXT']). The external environment's pathname extensionslist
(os. envi ron[' PATHEXT']) isused asafallback if thekey env[' ENV'] [' PATHEXT'] does not exist.

When called as a globa function, uses the external environment's path os. envi ron[' PATH] and path
extensionso0s. envi ron[' PATHEXT'], respectively, if pat h and pat hext are None.

Will not select any path name or namesin the optional r ej ect list.

SConscript Variables

In addition to the global functions and methods, scons supports a number of variables that can be used in SConscript
files to affect how you want the build to be performed.

ARGLI ST
A list of the keywor d=val ue arguments specified on the command line. Each element in thelistisatuple containing
the argument. The separate keyword and val ue elements of the tuple can be accessed by subscripting for elements
[O] and [1] of the tuple, or, more readably, by using tuple unpacking. Example:

print("first keyword, value =", ARG.IST[O0][0], ARGLIST[O][1])
print("second keyword, value =", ARGLIST[1][0], ARG.IST[1][1])
key, value = ARG ST[2]

Iy
=== SCONS 105

print("third keyword, value =", key, val ue)
for key, value in ARGLI ST:
process key and val ue

ARGUMENTS
A dictionary of all the keyword=value arguments specified on the command line. The dictionary is not in order,
and if a given keyword has more than one value assigned to it on the command line, the last (right-most) value
isthe one in the ARGUMENTS dictionary.

Example:

i f ARGUMENTS. get (' debug', 0):

env = Environment (CCFLAGS='-g')
el se:

env = Environment ()

BU LD _TARGETS
A list of the targets which scons has been asked to build. The contents will be either those targets listed on the
command line, or, if none, those targets set via callsto the Def aul t function. It does not contain any dependent
targets that scons selects for building as a result of making the sure the specified targets are up to date, if those
targets did not appear on the command line. The list is empty if neither command line targets or Def aul t calls
are present.

The elements of thislist may be strings or nodes, so you should run the list through the Python st r function to
make sure any Node path names are converted to strings.

Because this list may be taken from the list of targets specified using the Def aul t function, the contents of the
list may change on each successive call to Def aul t . See the DEFAULT _TARGETS list, below, for additional
information.

Example:

if '"foo' in BU LD TARCETS:

print("Don't forget to test the "foo' program")
if 'special/programi in BU LD TARCGETS:

SConscri pt (' speci al ')

COVVAND LI NE_TARGETS
A list of the targets explicitly specified on the command line. If there are command line targets, thislist will have
the same contents as BUI LD_TARGETS. If there are no targets specified on the command line, the list is empty.
The elements of this list are strings. This can be used, for example, to take specific actions only when certain
targets are explicitly being built.

Example:

if 'foo' in COVWAND LI NE TARGETS:
print("Don't forget to test the "foo' program")
if 'special/programi in COVAND LI NE_TARGETS:
SConscri pt (' special ')

DEFAULT_TARGETS
A list of the target nodes that have been specified using the Def aul t function. If there are no command line
targets, thislist will have the same contents as BUI LD_TARGETS. Since the elements of the list are nodes, you
need to call the Python st r function on them to get the path name for each Node.

Iy
=== SCONS 106

Example:

print(str(DEFAULT_TARGETS[0]))
if "foo' in [str(t) for t in DEFAULT_TARCGETS]:
print("Don't forget to test the "foo' program")

The contents of the DEFAULT_TARGETS list change on on each successive cal to the Def aul t function:

print([str(t) for t in DEFAULT TARGETS]) # originally []
Defaul t (' foo')

print([str(t) for t in DEFAULT TARGETS]) # now a node ['foo0']

Def aul t (' bar')

print([str(t) for t in DEFAULT TARGETS]) # now a node ['foo', 'bar']
Def aul t (None)

print([str(t) for t in DEFAULT TARGETS]) # back to []

Consequently, be sure to use DEFAULT _TARGETS only after you've made all of your Def aul t () cals, or else
simply be careful of the order of these statements in your SConscript files so that you don't look for a specific
default target before it's actually been added to the list.
These variables may be accessed from custom Python modules that you import into an SConscript file by adding the
following to the Python module;

from SCons. Scri pt inport *

Construction Variables

A construction environment has an associated dictionary of construction variables that are used by built-in or user-
supplied build rules. Construction variable naming must follow the same rules as Python identifier naming: theinitial
character must be an underscore or letter, followed by any number of underscores, letters, or digits. A construction
environment is not a Python dictionary itself, but it can be indexed like one to access a construction variable:

env["CC'] = "cc"

flags = env. get (" CPPDEFI NES", [])

Construction variables can also be retrieved and set by using the Di cti onary method of the construction
environment to create an actual dictionary:

cvars = env. Dictionary()

cvars["CC'] = "cc"

Construction variables can aso be passed to the construction environment constructor:

env = Environnment (CC="cc")

or when copying a construction environment using the Cl one method:

env2 = env. C one(CC="cl . exe")

Iy
=== SCONS 107

Construction variables can also be supplied as keyword arguments to a builder, in which case those settings affect only
thework done by that builder call, and not the construction environment as awhole. This concept is called an override:

env. Program(' hello', "hello.c', LIBS=['gl"', "glut'])

A number of useful construction variables are automatically defined by scons for each supported platform, and you
can modify these or define any additional construction variables for your own use, taking care not to overwrite ones
which SConsisusing. The following isalist of the possible automatically defined construction variables.

Note the actual list available at execution time will never include al of these, as the ones detected as not being useful
(wrong platform, necessary external command or filesnot installed, etc.) will not be set up. Correct build setups should
be resilient to the possible absence of certain construction variables before using them, for example by using a Python
dictionary get method to retrieve the value and taking alternative action if the return indicates the variable is unset.
The env. Dunp method can be called to examine the construction variables set in a particular environment.

__ L DMODULEVERSI ONFLAGS
This construction variable automatically introduces $_LDMODULEVERSI ONFLAGS if $LDMODULEVERSI ON
is set. Othervise it evaluates to an empty string.

__SHLI BVERSI ONFLAGS
This construction variable automatically introduces $_SHLI BVERSI ONFLAGS if $SHLI BVERSI ON is set.
Othervise it evaluates to an empty string.

APPLEL| NK_COWPATI BI LI TY_VERSI ON
On Mac OS X thisis used to set the linker flag: -compatibility version

The valueis specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This value will be derived from $SHLI BVERSI ON if not specified. The
lowest digit will be dropped and replaced by a 0.

If the SAPPLELI NK_NO_COWPATI BI LI TY_VERSI ONis set then no -compatibility_version will be outpuit.
See MacOS's |d manpage for more details

_APPLELI NK_COWPATI BI LI TY_VERSI ON
A macro (by default a generator function) used to create the linker flags to specify apple's linker's -
compatibility_version flag. The default generator uses $APPLELI NK_COWPATI Bl LI TY_VERSI ON and
$APPLELI NK_NO_COWPATI BI LI TY_VERSI ON and $SHL| BVERSI ON to determine the correct flag.

APPLELI NK_CURRENT_VERSI ON
On Mac OS X thisisused to set the linker flag: -current_version

The valueis specified as X[.Y[.Z]] where X is between 1 and 65535, Y can be omitted or between 1 and 255, Z
can be omitted or between 1 and 255. This value will be set to $SHLI BVERSI ONif not specified.

If the SAPPLELI NK_NO_CURRENT_VERSI ONis set then no -current_version will be output.
See MacOS's |d manpage for more details

_APPLELI NK_CURRENT_VERSI ON
A macro (by default a generator function) used to create the linker flags to specify apple's
linker's -current_version flag. The default generator uses $APPLELI NK_CURRENT_VERSI ON and
$APPLELI NK_NO_CURRENT_VERSI ON and $SHLI BVERSI ON to determine the correct flag.

APPLELI NK_NO_COWPATI BI LI TY_VERSI ON
Set thisto any True (1|Truelnon-empty string) valueto disable adding -compatibility_version flag when generating
versioned shared libraries.

Iy
=== SCONS 108

This overrides SAPPLEL| NK_COMPATI BI LI TY_VERSI ON.

APPLELI NK_NO_CURRENT_VERSI ON
Set this to any True (1|Truenon-empty string) value to disable adding -current_version flag when generating
versioned shared libraries.

This overrides SAPPLEL| NK_CURRENT_VERSI ON.

AR
The static library archiver.

ARCHI TECTURE
Specifies the system architecture for which the package is being built. The default is the system architecture of
the machine on which SConsisrunning. Thisisusedtofill inthe Ar chi t ect ur e: fieldinanlpkgcontr ol
file, and the Bui | dAr ch: field in the RPM . spec file, as well as forming part of the name of a generated
RPM packagefile.

See the Package builder.

ARCOM
The command line used to generate a static library from object files.

ARCOMSTR
The string displayed when a static library is generated from object files. If this is not set, then $ARCOM (the
command line) is displayed.

env = Environnment (ARCOVBTR = "Archi vi ng $TARGET")

ARFLAGS
General options passed to the static library archiver.

AS
The assembler.

ASCOM
The command line used to generate an object file from an assembly-language source file.

ASCOMSTR
The string displayed when an object file is generated from an assembly-language source file. If thisis not set,
then $ASCOM (the command line) is displayed.

env = Environnment (ASCOMSTR = "Assenbl i ng $TARCGET")

ASFLAGS
General options passed to the assembler.

ASPPCOM
The command line used to assembl e an assembly-language sourcefileinto an object file after first running thefile
through the C preprocessor. Any options specified in the $ASFLAGS and $CPPFLAGS construction variables
areincluded on this command line.

ASPPCOVSTR
The string displayed when an object file is generated from an assembly-language source file after first running
the file through the C preprocessor. If thisis not set, then $ASPPCOM (the command line) is displayed.

Iy
=== SCONS 109

env = Environnment (ASPPCOVSTR = "Assenbl i ng $TARGET")

ASPPFLAGS
General options when an assembling an assembly-language source file into an object file after first running the
file through the C preprocessor. The default is to use the value of $ASFLAGS.

Bl BTEX
Thebibliography generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

Bl BTEXCOM

The command line used to call the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

Bl BTEXCOMSTR

The string displayed when generating a bibliography for TeX or LaTeX. If thisis not set, then $Bl BTEXCOM
(the command line) is displayed.

env = Environnent (Bl BTEXCOVBTR = "CGenerating bi bl i ography $TARGET")

Bl BTEXFLAGS
General options passed to the bibliography generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

BUI LDERS
A dictionary mapping the names of the builders available through the construction environment to underlying
Builder objects. Custom builders need to be added to this to make them available.

A platform-dependent default list of builders such as Program Li brary etc. is used to populate this
construction variable when the construction environment is initialized via the presence/absence of the tools those
builders depend on. $BUI LDERS can be examined to learn which builders will actually be available at run-time.

Note that if you initialize this construction variable through assignment when the construction environment is
created, that value for $BUI LDERS will override any defaults:

bl d
env

Bui | der (acti on=' foobuild < $SOURCE > $TARGET')
Envi ronment (BUl LDERS={' NewBui | der': bl d})

To instead use a new Builder object in addition to the default Builders, add your new Builder object like this:

env = Environment ()
env. Append(BUl LDERS={' NewBui | der': bl d})

or this:

env = Environnent ()
env[' BU LDERS][' NewBuil der'] = bld

CACHEDI R_CLASS
The class type that SCons should use when instantiating anew CacheDbi r for the given environment. It must be
a subclass of the SCons.CacheDir.CacheDir class.

CcC
The C compiler.

Iy
=== SCONS 110

CCccom
The command line used to compile a C sourcefile to a(static) object file. Any options specified in the $CFLAGS,
$CCFLAGS and $CPPFLAGS construction variables are included on this command line. See also $SHCCCOM
for compiling to shared objects.

CCCOVBTR
If set, the string displayed when a C source file is compiled to a (static) object file. If not set, then $CCCOM (the
command line) is displayed. See a'so $SHCCCOMSTR for compiling to shared objects.

env = Environnent (CCCOVBTR = "Conpi |l i ng static object $TARGET")

CCDEPFLAGS
Optionsto passto C or C++ compiler to generate list of dependency files.

Thisis set only by compilers which support this functionality. (gcc, cl ang, and nsvc currently)

CCFLAGS
General options that are passed to the C and C++ compilers. See also $SHCCFLAGS for compiling to shared
objects.

CCPCHFLAGS
Options added to the compiler command line to support building with precompiled headers. The default value
expands expands to the appropriate Microsoft Visual C++ command-line options when the $PCH construction
variableis set.

CCPDBFLAGS
Options added to the compiler command line to support storing debugging information in a Microsoft Visual C+
+ PDB file. The default value expands expands to appropriate Microsoft Visual C++ command-line options when
the $PDB construction variable is set.

The Visual C++ compiler option that SCons uses by default to generate PDB information is/ Z7. This works
correctly with parallée (-) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple object files. This is aso the only way to get debug
information embedded into a static library. Using the / Zi instead may yield improved link-time performance,
although parallel builds will no longer work.

Y ou can generate PDB fileswith the/ Zi switch by overriding the default $CCPDBFLAGS variable as follows:

env[' CCPDBFLAGS'] = ['${(PDB and "/Zi /Fd%" % File(PDB)) or ""}']

An dternative would be to usethe/ Zi to put the debugging information in a separate . pdb file for each object
file by overriding the $CCPDBFLAGS variable as follows:

env[' CCPDBFLAGS' | = '/Zi /Fd${TARGET}. pdb'

CCVERSI ON
The version number of the C compiler. This may or may not be set, depending on the specific C compiler being
used.

CFl LESUFFI X
The suffix for C source files. This is used by the internal CFile builder when generating C files from Lex (.I)
or YACC (.y) input files. The default suffix, of course, is. ¢ (lower case). On case-insensitive systems (like
Windows), SCons also treats. C (upper case) filesas C files.

Iy
=== SCONS 111

CFLAGS
General options that are passed to the C compiler (C only; not C++). See also $SHCFLAGS for compiling to
shared objects.

CHANGE_SPECFI LE
A hook for modifying the file that controls the packaging build (the . spec for RPM, thecont r ol for Ipkg, the
. wxs for MSl). If set, the function will be called after the SCons template for the file has been written.

See the Package builder.

CHANCED_SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Subgtitution" for more information).

CHANGED TARCETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

CHANGEL GG
The name of a file containing the change log text to be included in the package. This is included as the
% hangel og section of the RPM . spec file.

See the Package builder.

COVPI LATI ONDB_COMSTR
The string displayed when the Conpi | at i onDat abase builder's actionisrun.

COVPI LATI ONDB_PATH_FI LTER
A string which instructs Conpi | at i onDat abase to only include entrieswherethe out put member matches
the pattern in the filter string using fnmatch, which uses glob style wildcards.

The default value is an empty string ", which disables filtering.

COWVPI LATI ONDB_USE_ABSPATH
A boolean flag to instruct Conpi | at i onDat abase whether to writethef i | e and out put membersin the
compilation database using absolute or relative paths.

The default value is False (use relative paths)

concat

A function used to produce variables like $_CPPI NCFLAGS. It takes four mandatory arguments, and up to 4
additional optional arguments: 1) a prefix to concatenate onto each element, 2) alist of elements, 3) a suffix to
concatenate onto each element, 4) an environment for variable interpolation, 5) an optional function that will
be called to transform the list before concatenation, 6) an optionally specified target (Can use TARGET), 7) an
optionally specified source (Can use SOURCE), 8) optional af f ect _si gnat ur e flag which will wrap non-
empty returned value with $(and $) to indicate the contents should not affect the signature of the generated
command line.

env[' CPPI NCFLAGS'] = '${ concat (| NCPREFI X, CPPPATH, |INCSUFFI X, env__, RDirs,

CONFI GUREDI R
The name of the directory in which Configure context test files are written. The defaultis. sconf _t enp inthe
top-level directory containing the SConst r uct file.

Iy
=== SCONS 112

CONFI GURELOG
The name of the Conf i gur e context log file. Thedefaultisconfi g. | og inthetop-level directory containing
the SConst r uct file.

_ CPPDEFFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options to define
values. Thevalue of $_CPPDEFFLAGS is created by respectively prepending and appending $CPPDEFPREFI X
and $CPPDEFSUFFI X to each definition in $CPPDEFI NES.

CPPDEFI NES
A platform independent specification of C preprocessor macro definitions. The definitions will be added to
command lines through the automatically-generated $_ CPPDEFFLAGS construction variable (see above), which
is constructed according to the type of value of $CPPDEFI NES:

If $CPPDEFI NES isastring, the val ues of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction variables
will be respectively prepended and appended to each definition in $CPPDEFI NES.

WIl add -Dxyz to POSI X conpil er conmand | i nes,
and /Dxyz to Mcrosoft Visual C++ command |i nes.
env = Envi r onnent (CPPDEFI NES=' xyz')

If $CPPDEFI NES is a list, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction variables
will be respectively prepended and appended to each element in thelist. If any element isalist or tuple, then the
first item is the name being defined and the second item isits value:

WIl add -DB=2 -DA to PCSI X conpil er command |i nes,
and /DB=2 /DA to Mcrosoft Visual C++ conmand |i nes.
env = Environnent (CPPDEFI NES=[('B', 2), 'A])

If $CPPDEFI NES is a dictionary, the values of the $CPPDEFPREFI X and $CPPDEFSUFFI X construction
variableswill berespectively prepended and appended to each item from the dictionary. Thekey of each dictionary
item is a name being defined to the dictionary item's corresponding value; if the value is None, then the name is
defined without an explicit value. Note that the resulting flags are sorted by keyword to ensure that the order of
the options on the command line is consistent each time sconsis run.

WIl add -DA -DB=2 to PCSI X conpil er command |i nes,
and /DA /DB=2 to Mcrosoft Visual C++ conmand |i nes.
env = Environnment (CPPDEFI NES={' B' : 2, ' A': None})

CPPDEFPREFI X
The prefix used to specify preprocessor macro definitions on the C compiler command line. This will be
prepended to each definition in the $CPPDEFI NES construction variable when the $_ CPPDEFFLAGS variable
isautomatically generated.

CPPDEFSUFFI X
The suffix used to specify preprocessor macro definitions on the C compiler command line. This will be
appended to each definition in the $CPPDEFI NES construction variable when the $ CPPDEFFLAGS variable
isautomatically generated.

CPPFLAGS
User-specified C preprocessor options. These will be included in any command that uses the C preprocessor,
including not just compilation of C and C++ source files via the $CCCOM $SHCCCOM $CXXCOM and

Iy
=== SCONS 113

$SHCXXCOM command lines, but also the $FORTRANPPCOM $SHFORTRANPPCOM $F77PPCOM and
$SHF77PPCOMcommand lines used to compile a Fortran source file, and the $SASPPCOM command line used
to assemble an assembly language source file, after first running each file through the C preprocessor. Note that
thisvariable does not contain - | (or similar) include search path options that scons generates automatically from
$CPPPATH. See $_CPPI NCFLAGS, below, for the variable that expands to those options.

_CPPI NCFLAGS
An automatically-generated construction variable containing the C preprocessor command-line options for
specifying directories to be searched for includefiles. The value of $ CPPI NCFLAGS is created by respectively
prepending and appending $| NCPREFI X and $1 NCSUFFI X to each directory in $CPPPATH.

CPPPATH
Thelist of directoriesthat the C preprocessor will search for include directories. The C/C++ implicit dependency
scanner will search these directoriesfor includefiles. In general it's not advised to put include directory directives
directly into $CCFLAGS or $CXXFLAGS astheresult will be non-portable and the directorieswill not be searched
by the dependency scanner. $CPPPATH should be a list of path strings, or a single string, not a pathname list
joined by Python'sos. sep.

Note: directory namesin $CPPPATH will be looked-up relative to the directory of the SConscript file when they
are used inacommand. To force sconsto look-up adirectory relative to theroot of the source tree use the # prefix:

env = Environnent (CPPPATH=" #/ i ncl ude')

The directory look-up can also be forced using the Di r function:

include = Dir('include')
env = Environment (CPPPATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $_CPPI NCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$I NCPREFI X and $1 NCSUFFI X construction variables to each directory in $SCPPPATH. Any command lines
you define that need the SCPPPATH directory list should include $ _CPPI NCFLAGS:

env = Environnent (CCCOVE"ny_conpi | er $_CPPI NCFLAGS -c -0 $TARGET $SOURCE")

CPPSUFFI XES
The list of suffixes of files that will be scanned for C preprocessor implicit dependencies (#include lines). The
default listis:

[".c", ".C", ".cxx", ".cpp", ".c++", ".cc",
“.h", ".H, ".hxx", ".hpp", ".hh",
“LF, ".fpp", ".FPP",
".s", ".spp", ".SPP"]
CXX

The C++ compiler. See also $SHCXX for compiling to shared objects..

CXXCOM
The command line used to compile a C++ source file to an object file. Any options specified in the $CXXFLAGS
and $CPPFLAGS construction variables are included on this command line. See also $SHCXXCOMfor compiling
to shared objects..

Iy
=== SCONS 114

CXXCOVBTR
If set, the string displayed when a C++ source file is compiled to a (static) object file. If not set, then $CXXCOM
(the command line) is displayed. See also $SHCXXCOMSTR for compiling to shared objects..

env = Environnment (CXXCOVSTR = "Conpiling static object $TARGET")

CXXFI LESUFFI X
The suffix for C++ sourcefiles. Thisisused by theinternal CXXFile builder when generating C++ files from Lex
(I or YACC (.yy) input files. The default suffix is. cc. SCons also treats files with the suffixes. cpp, . cxXx,
. c++, and . C++ as C++ files, and files with . mmsuffixes as Objective C++ files. On case-sensitive systems
(Linux, UNIX, and other POSIX-alikes), SCons also treats . C (upper case) files as C++ files.

CXXFLAGS
General options that are passed to the C++ compiler. By default, this includes the value of $CCFLAGS, so that
setting $CCFLAGS affects both C and C++ compilation. If you want to add C++-specific flags, you must set or
override the value of $CXXFLAGS. See also $SHCXXFLAGS for compiling to shared objects..

CXXVERSI ON
The version number of the C++ compiler. This may or may not be set, depending on the specific C++ compiler
being used.

DC
The D compiler to use. See also $SHDC for compiling to shared objects.

DCOM
The command line used to compile a D file to an object file. Any options specified in the $DFLAGS construction
variableisincluded on this command line. See also $SHDCOMfor compiling to shared objects.

DCOVBTR
If set, the string displayed when a D source file is compiled to a (static) object file. If not set, then $DCOM (the
command line) is displayed. See also $SHDCOVBTR for compiling to shared objects.

DDEBUG
List of debug tags to enable when compiling.

DDEBUGPREFI X
DDEBUGPREFIX.

DDEBUGSUFFI X
DDEBUGSUFFIX.

DESCRI PTI ON
A long description of the project being packaged. Thisisincluded in the relevant section of the file that controls
the packaging build.

Seethe Package builder.

DESCRI PTI ON_I ang
A language-specific long description for the specified | ang. Thisis used to populate a %gdescri pti on -1
section of an RPM . spec file.

See the Package builder.

DFI LESUFFI X
DFILESUFFIX.

Iy
=== SCONS 115

DFLAGPREFI X
DFLAGPREFIX.

DFLAGS
General optionsthat are passed to the D compiler.

DFLAGSUFFI X
DFLAGSUFFIX.

DI NCPREFI X
DINCPREFIX.

DI NCSUFFI X
DLIBFLAGSUFFIX.

Dir
A function that converts a string into a Dir instance relative to the target being built.
Drs
A function that converts alist of stringsinto alist of Dir instances relative to the target being built.

DLIB
Name of thelib tool to use for D codes.

DLI BCOM
The command line to use when creating libraries.

DLI BDI RPREFI X
DLIBLINKPREFIX.

DLI BDI RSUFFI X
DLIBLINKSUFFIX.

DLI BFLAGPREFI X
DLIBFLAGPREFIX.

DLI BFLAGSUFFI X
DLIBFLAGSUFFIX.

DLI BLI NKPREFI X
DLIBLINKPREFIX.

DLI BLI NKSUFFI X
DLIBLINKSUFFIX.

DLI NK
Name of thelinker to usefor linking systemsincluding D sources. See also $SHDLI NK for linking shared objects.

DLI NKCOM
The command line to use when linking systemsincluding D sources. See also $SHDLI NKCOMfor linking shared
objects.

DLI NKFLAGPREFI X
DLINKFLAGPREFIX.

DLI NKFLAGS
List of linker flags. See d'so $SHDLI NKFLAGS for linking shared objects.

Iy
=== SCONS 116

DLI NKFLAGSUFFI X
DLINKFLAGSUFFIX.

DOCBOOK_DEFAULT_XSL_EPUB
The default XSLT file for the DocbookEpub builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTM
The default XSLT file for the DocbookHt m builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_HTM_CHUNKED
Thedefault XSLT filefor theDocbookHt ml Chunked builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_HTMLHELP
The default XSLT file for the DocbookHt m hel p builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_DEFAULT_XSL_MAN
The default XSLT file for the DocbookMan builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK_DEFAULT_XSL_PDF
The default XSLT file for the DocbookPdf builder within the current environment, if no other XSLT gets
specified via keyword.

DOCBOOK _DEFAULT_XSL_SLI DESHTM.
Thedefault XSLT filefor the Docbook Sl i desHt ml builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK _DEFAULT_XSL_SLI| DESPDF
The default XSLT file for the DocbookS| i desPdf builder within the current environment, if no other XSLT
gets specified via keyword.

DOCBOOK_FOP
The path to the PDF renderer f op or xep, if one of themisinstalled (f op gets checked first).

DOCBOCK_FOPCOM
The full command-line for the PDF renderer f op or xep.

DOCBOOK_FOPCOVSTR
The string displayed when arenderer likef op or xep isused to create PDF output from an XML file.

DOCBOOK_FOPFLAGS
Additonal command-line flags for the PDF renderer f op or xep.

DOCBOOK_XM_LI NT
The path to the external executable xm | i nt , if it's installed. Note, that this is only used as last fallback for
resolving XIncludes, if no Ixml Python binding can be imported in the current system.

DOCBOOK_XM_LI NTCOM
The full command-line for the external executable xmi | i nt .

DOCBOOK_XM_LI NTCOMSTR
The string displayed when xmi | i nt isused to resolve XIncludes for agiven XML file.

Iy
=== SCONS 117

DOCBOOK_XML_LI NTFLAGS
Additonal command-line flags for the external executablexm | i nt .

DOCBOOK_XSLTPRCOC
The path to the external executable xsl t pr oc (or saxon, xal an), if one of them isinstalled. Note, that this
isonly used as last fallback for XSL transformations, if no Ixml Python binding can be imported in the current
system.

DOCBOCK_XSLTPROCCOM
The full command-line for the external executable xsl t pr oc (or saxon, xal an).

DOCBOCOK_XSLTPROCCOMSTR
The string displayed when xsl t pr oc is used to transform an XML fileviaagiven XSLT stylesheet.

DOCBOOK_XSLTPROCFLAGS
Additonal command-line flags for the external executable xsl t pr oc (or saxon, xal an).

DOCBOOK _XSLTPROCPARANMS
Additonal parameters that are not intended for the XSLT processor executable, but the X SL processing itself. By
default, they get appended at the end of the command line for saxon and saxon- xsl t , respectively.

DPATH
List of pathsto search for import modules.

DRPATHPREFI X
DRPATHPREFIX.

DRPATHSUFFI X
DRPATHSUFFIX.

DSUFFI XES
The list of suffixes of filesthat will be scanned for imported D package files. The default listis[' . d'] .

DVERPREFI X
DVERPREFIX.

DVERSI ONS
List of version tags to enable when compiling.

DVERSUFFI X
DVERSUFFIX.

DVI PDF
The TeX DVI fileto PDF file converter.

DVI PDFCOM
The command line used to convert TeX DVI filesinto a PDF file.

DVI PDFCOMBTR
The string displayed when aTeX DV fileis converted into a PDF file. If thisis not set, then $DVI PDFCOM(the
command line) is displayed.

DVI PDFFLAGS
General options passed to the TeX DVI file to PDF file converter.

DVI PS
The TeX DVI file to PostScript converter.

Iy
=== SCONS 118

DVI PSFLAGS
General options passed to the TeX DVI file to PostScript converter.

ENV
The execution environment - adictionary of environment variables used when SConsinvokes external commands
to build targets defined in this construction environment. When $ENV is passed to a command, all list values are
assumed to be path lists and are joined using the search path separator. Any other non-string values are coerced
to a string.

Note that by default SCons does not propagate the environment in effect when you execute scons (the "shell
environment") to the execution environment. Thisis so that buildswill be guaranteed repeatable regardless of the
environment variables set at the time scons is invoked. If you want to propagate a shell environment variable to
the commands executed to build target files, you must do so explicitly. A common example is the system PATH
environment variable, so that sconswill find utilities the same way as the invoking shell (or other process):

i mport os
env = Environment (ENV={' PATH : os.environ[' PATH]})

Although it is usually not recommended, you can propagate the entire shell environment in one go:

i mport os
env = Environnment (ENV=0s. envi ron. copy())

ESCAPE
A function that will be called to escape shell specia characters in command lines. The function should take one
argument: the command line string to escape; and should return the escaped command line.

FO3
The Fortran 03 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F03 if you need to use a specific compiler or compiler
version for Fortran 03 files.

FO3COoM
The command line used to compile a Fortran 03 sourcefileto an object file. Y ou only need to set $F03COMif you
need to use a specific command line for Fortran 03 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

FO3COMBTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file. If not set, then $F03COM
or $FORTRANCOM (the command line) is displayed.

FO3FI LESUFFI XES
Thelist of file extensions for which the FO3 dialect will be used. By default, thisis[' . f 03"]

FO3FLAGS
General user-specified options that are passed to the Fortran 03 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FO3PATH. See
$_FO03I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FO3FLAGS if
you need to define specific user options for Fortran 03 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_F03Il NCFLAGS
An automatically-generated construction variable containing the Fortran 03 compiler command-line options for
specifying directories to be searched for include files. The value of $_F03I NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $FO3PATH.

Iy
=== SCONS 119

FO3PATH

The list of directories that the Fortran 03 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FO3FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $FO3PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relativeto the root of the sourcetree use#: Y ou only
need to set $FO3PATH if you need to define a specific include path for Fortran 03 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment (FO3PATH=' #/i ncl ude')

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environment (FO3PATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $ FO31 NCFLAGS
construction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $SFO3PATH. Any command lines you define
that need the FO3PATH directory list should include $_FO31 NCFLAGS:

env = Environnment (FO3COVE"nmy_conpil er $ FO3I NCFLAGS -c¢ -0 $TARCGET $SOURCE")

FO3PPCOM
The command line used to compile a Fortran 03 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO3FLAGS and $CPPFLAGS construction variables are included
on this command line. Y ou only need to set $FO3PPCOMif you need to use a specific C-preprocessor command
line for Fortran 03 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FO3PPCOVBTR
If set, the string displayed when a Fortran 03 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $FO3PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO3PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for FO3 dialect will be used. By default,
thisis empty.

FO08
The Fortran 08 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for all Fortran versions. Y ou only need to set $F08 if you need to use a specific compiler or compiler
version for Fortran 08 files.

FO8COM
The command line used to compile aFortran 08 sourcefileto an object file. Y ou only need to set $F08 COMIif you
need to use a specific command line for Fortran 08 files. Y ou should normally set the $FORTRANCOMvariable,
which specifies the default command line for al Fortran versions.

FO8COVETR
If set, the string displayed when a Fortran 08 source file is compiled to an object file. If not set, then $FO8COM
or $FORTRANCOM (the command line) is displayed.

Iy
=== SCONS 120

FO8FI LESUFFI XES
Thelist of file extensions for which the FO8 dialect will be used. By default, thisis[' . f 08"]

FOBFLAGS
General user-specified options that are passed to the Fortran 08 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $FO8PATH. See
$_F08I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FO8FLAGS if
you need to define specific user options for Fortran 08 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for al Fortran versions.

_F08I NCFLAGS
An automatically-generated construction variable containing the Fortran 08 compiler command-line options for
specifying directories to be searched for include files. The value of $_F08| NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $FO8PATH.

FO8PATH

The list of directories that the Fortran 08 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FO8FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $FO8PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relativeto the root of the sourcetree use#: Y ou only
need to set $FO8PATH if you need to define a specific include path for Fortran 08 files. Y ou should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environnent (FOBPATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Environment (FO8BPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_F08! NCFLAGS
construction variable, which is constructed by appending the values of the $1 NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in SFO8PATH. Any command lines you define
that need the FOBPATH directory list should include $_FO08I NCFLAGS:

env = Environnment (FOBCOVE"nmy_conpil er $ FO8I NCFLAGS -c¢ -0 $TARCGET $SOURCE")

FO8PPCOM
The command line used to compile a Fortran 08 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO8FLAGS and $CPPFLAGS construction variables are included
on this command line. Y ou only need to set $F08 PPCOMif you need to use a specific C-preprocessor command
line for Fortran 08 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FO8PPCOVBTR
If set, the string displayed when a Fortran 08 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $FO8 PPCOMor $FORTRANPPCOM (the command line) is displayed.

FO8PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for FO8 dialect will be used. By default,
thisis empty.

Iy
=== SCONS 121

F77
The Fortran 77 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F77 if you need to use a specific compiler or compiler
version for Fortran 77 files.

F77COM
The command line used to compile aFortran 77 sourcefile to an object file. Y ou only need to set $F77 COMif you
need to use a specific command line for Fortran 77 files. Y ou should normally set the $FORTRANCOMvariable,
which specifies the default command line for al Fortran versions.

F77COVSTR
If set, the string displayed when a Fortran 77 source file is compiled to an object file. If not set, then $F77COM
or $FORTRANCOM (the command line) is displayed.

F77F1 LESUFFI XES
The list of file extensions for which the F77 dialect will be used. By default, thisis[' . f 77"]

F77FLAGS
General user-specified options that are passed to the Fortran 77 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F77PATH. See
$_F771 NCFLAGS below, for the variable that expands to those options. Y ou only need to set $F77FLAGS if
you need to define specific user options for Fortran 77 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for al Fortran versions.

_F771 NCFLAGS
An automatically-generated construction variable containing the Fortran 77 compiler command-line options for
specifying directories to be searched for include files. The value of $_F771 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F77PATH.

F77PATH

The list of directories that the Fortran 77 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$F77FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory namesin $F77PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relativeto the root of the sourcetree use#: Y ou only
need to set $F77PATH if you need to define a specific include path for Fortran 77 files. Y ou should normally set
the $FORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment (F77PATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')

env = Environment (F77PATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $_F771 NCFLAGS
construction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X

construction variables to the beginning and end of each directory in $F77PATH. Any command lines you define
that need the F77PATH directory list should include $_F771 NCFLAGS:

env = Environnent (F77COVE"ny_conpi |l er $_F771 NCFLAGS -c -0 $TARGET $SOURCE")

Iy
=== SCONS 122

F77PPCOM
The command line used to compile a Fortran 77 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F77FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $F77PPCOMif you need to use a specific C-preprocessor command
line for Fortran 77 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

F77PPCOVSTR
If set, the string displayed when a Fortran 77 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F77PPCOMor $FORTRANPPCOM (the command line) is displayed.

F77PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for F77 dialect will be used. By default,
thisis empty.

F90
The Fortran 90 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F90 if you need to use a specific compiler or compiler
version for Fortran 90 files.

FooCom
The command line used to compile a Fortran 90 sourcefileto an object file. Y ou only need to set $F90COMif you
need to use a specific command line for Fortran 90 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

FOOCOVSTR
If set, the string displayed when a Fortran 90 source file is compiled to an object file. If not set, then $F90COM
or $FORTRANCOM (the command line) is displayed.

FOOFI LESUFFI XES
Thelist of file extensions for which the FO0 dialect will be used. By default, thisis[' . f 90"]

FOOFLAGS
General user-specified options that are passed to the Fortran 90 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F90PATH. See
$_F90I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FOOFLAGS if
you need to define specific user options for Fortran 90 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_F90l NCFLAGS
An automatically-generated construction variable containing the Fortran 90 compiler command-line options for
specifying directories to be searched for include files. The value of $_F90I NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F90PATH.

FOOPATH

The list of directories that the Fortran 90 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FI0FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F90PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relativeto the root of the sourcetree use#: Y ou only
need to set $F9OPATH if you need to define a specific include path for Fortran 90 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environment (FOOPATH=" #/ i ncl ude')

Iy
=== SCONS 123

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environment (FOOPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $ F901 NCFLAGS
construction variable, which is constructed by appending the values of the $| NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in SF9OPATH. Any command lines you define
that need the FOOPATH directory list should include $_F90I NCFLAGS:

env = Envi ronnent (FO9OCOMVE" my_conpi | er $_F90I NCFLAGS -c -0 $TARGET $SOURCE")

FOOPPCOM
The command line used to compile a Fortran 90 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $FO0FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $F90PPCOMif you need to use a specific C-preprocessor command
line for Fortran 90 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FOOPPCOVBTR
If set, the string displayed when a Fortran 90 source file is compiled after first running the file through the C
preprocessor. |f not set, then $F90PPCOMor $FORTRANPPCOM (the command line) is displayed.

FOOPPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for F90 dialect will be used. By default,
thisis empty.

F95
The Fortran 95 compiler. Y ou should normally set the $FORTRAN variable, which specifies the default Fortran
compiler for al Fortran versions. Y ou only need to set $F95 if you need to use a specific compiler or compiler
version for Fortran 95 files.

F95COoM
The command line used to compile a Fortran 95 sourcefileto an object file. Y ou only need to set $F95COMif you
need to use a specific command line for Fortran 95 files. Y ou should normally set the $FORTRANCOMVvariable,
which specifies the default command line for all Fortran versions.

FO5COMBTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file. If not set, then $F95COM
or $FORTRANCOM (the command line) is displayed.

FO95FI LESUFFI XES
Thelist of file extensions for which the F95 dialect will be used. By default, thisis[' . f 95"]

FO5FLAGS
General user-specified options that are passed to the Fortran 95 compiler. Note that this variable does not
contain - | (or similar) include search path options that scons generates automatically from $F95PATH. See
$_F95I NCFLAGS below, for the variable that expands to those options. Y ou only need to set $FO5FLAGS if
you need to define specific user options for Fortran 95 files. You should normally set the SFORTRANFLAGS
variable, which specifiesthe user-specified options passed to the default Fortran compiler for all Fortran versions.

_F951 NCFLAGS
An automatically-generated construction variable containing the Fortran 95 compiler command-line options for
specifying directories to be searched for include files. The value of $_F951 NCFLAGS is created by appending
$I NCPREFI X and $| NCSUFFI X to the beginning and end of each directory in $F95PATH.

Iy
=== SCONS 124

F95PATH

The list of directories that the Fortran 95 compiler will search for include directories. The implicit dependency
scanner will search these directories for include files. Don't explicitly put include directory arguments in
$FI5FLAGS because the result will be non-portable and the directories will not be searched by the dependency
scanner. Note: directory names in $F95PATH will be looked-up relative to the SConscript directory when they
are used in acommand. To force sconsto look-up adirectory relativeto the root of the sourcetree use#: Y ou only
need to set $F95PATH if you need to define a specific include path for Fortran 95 files. Y ou should normally set
the SFORTRANPATH variable, which specifies the include path for the default Fortran compiler for all Fortran
versions.

env = Environnent (FO5PATH=" #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Environment (FO95PATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $_F951 NCFLAGS
construction variable, which is constructed by appending the values of the $I NCPREFI X and $I NCSUFFI X
construction variables to the beginning and end of each directory in $F95PATH. Any command lines you define
that need the FO5PATH directory list should include $_F951 NCFLAGS:

env = Environnment (FO5COME"nmy_conpi l er $_F951 NCFLAGS -c¢ -0 $TARCET $SOURCE")

FO5PPCOM
The command line used to compile a Fortran 95 source file to an object file after first running the file through the
C preprocessor. Any options specified in the $F95FLAGS and $CPPFLAGS construction variables are included
on thiscommand line. Y ou only need to set $F95PPCOMif you need to use a specific C-preprocessor command
line for Fortran 95 files. Y ou should normally set the $FORTRANPPCOMvariable, which specifies the default C-
preprocessor command line for all Fortran versions.

FO5PPCOVBTR
If set, the string displayed when a Fortran 95 source file is compiled to an object file after first running the file
through the C preprocessor. If not set, then $F95PPCOMor $FORTRANPPCOM(the command line) is displayed.

FI95PPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for F95 dialect will be used. By defaullt,
thisis empty.

File
A function that converts a string into a File instance relative to the target being built.

FORTRAN
The default Fortran compiler for al versions of Fortran.

FORTRANCOM
The command line used to compile a Fortran source file to an object file. By default, any options specified in the
$FORTRANFLAGS, $_FORTRANMODFLAG, and $_FORTRANI NCFLAGS construction variables are included
on this command line.

FORTRANCOMVONFLAGS
General user-specified options that are passed to the Fortran compiler. Similar to $FORTRANFLAGS, but this
variableis applied to all diaects.

Iy
=== SCONS 125

FORTRANCOMSTR
If set, the string displayed when a Fortran source fileis compiled to an object file. If not set, then SFORTRANCOM
(the command line) is displayed.

FORTRANFI LESUFFI XES
Thelist of file extensions for which the FORTRAN dialect will be used. By default, thisis[' . f', '.for",
Lftn']

FORTRANFLAGS
General user-specified options for the FORTRAN dialect that are passed to the Fortran compiler. Note that this
variabledoesnot contain - | (or similar) include or module search path options that scons generates automatically
from $FORTRANPATH. See $_FORTRANI NCFLAGS and $_ FORTRANMODFLAG, below, for the variables that
expand those options.

_FORTRANI NCFLAGS
An automatically-generated construction variable containing the Fortran compiler command-line options for
specifying directories to be searched for include files and module files. The value of $ FORTRANI NCFLAGS is
created by respectively prepending and appending $1 NCPREFI X and $I NCSUFFI X to the beginning and end
of each directory in $FORTRANPATH.

FORTRANMODDI R
Directory location where the Fortran compiler should place any module filesit generates. This variable is empty,
by default. Some Fortran compilerswill internally append thisdirectory in the search path for modulefiles, aswell.

FORTRANMODDI RPREFI X
The prefix used to specify amodul e directory on the Fortran compiler command line. Thiswill be prepended to the
beginning of the directory in the $FORTRANMODDI R construction variables when the $_ FORTRANMODFLAG
variablesis automatically generated.

FORTRANMODDI RSUFFI X
The suffix used to specify amodule directory on the Fortran compiler command line. Thiswill be appended to the
end of the directory in the SFORTRANMODDI R construction variableswhenthe$ FORTRANMODFLAGvariables
isautomatically generated.

_ FORTRANMODFLAG
An automatically-generated construction variable containing the Fortran compiler command-line option for
specifying the directory location where the Fortran compiler should place any module files that happen to
get generated during compilation. The value of $ _FORTRANMODFLAG is created by respectively prepending
and appending $FORTRANMODDI RPREFI X and $FORTRANMODDI RSUFFI X to the beginning and end of the
directory in $FORTRANMODDI R.

FORTRANMODPREFI X
The module file prefix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for modulefiles of nodul e_nane. nod. Asaresult, thisvariableisleft empty, by
default. For situations in which the compiler does not necessarily follow the normal convention, the user may use
thisvariable. Its value will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANMODSUFFI X
The module file suffix used by the Fortran compiler. SCons assumes that the Fortran compiler follows the quasi-
standard naming convention for module files of nodul e_nane. nod. Asaresult, thisvariableis set to ".mod",
by default. For situations in which the compiler does not necessarily follow the normal convention, the user may
usethisvariable. Itsvalue will be appended to every module file name as scons attempts to resolve dependencies.

FORTRANPATH
Thelist of directoriesthat the Fortran compiler will search for includefilesand (for some compilers) modulefiles.
The Fortran implicit dependency scanner will search these directories for include files (but not module files since

Iy
=== SCONS 126

they are autogenerated and, as such, may not actually exist at the time the scan takes place). Don't explicitly put
include directory argumentsin FORTRANFLAGS because the result will be non-portable and the directories will
not be searched by the dependency scanner. Note: directory namesin FORTRANPATH will belooked-up relative
to the SConscript directory when they are used in a command. To force scons to look-up a directory relative to
theroot of the source tree use #:

env = Environment (FORTRANPATH=' #/ i ncl ude')

The directory look-up can aso be forced using the Di r () function:

include = Dir('include')
env = Environnent (FORTRANPATH=I ncl ude)

The directory list will be added to command lines through the automatically-generated $_ FORTRANI NCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$I NCPREFI X and $I NCSUFFI X construction variables to the beginning and end of each directory in
$FORTRANPATH. Any command lines you define that need the FORTRANPATH directory list should include
$_FORTRANI NCFLAGS:

env = Envi ronnent (FORTRANCOMVE" ny_conpi | er $ FORTRANI NCFLAGS -c¢ -0 $TARGET $SOURCE")

FORTRANPPCOM
The command line used to compile a Fortran source file to an object file after first running the file through the
C preprocessor. By default, any options specified in the SFORTRANFLAGS, $CPPFLAGS, $ CPPDEFFLAGS,
$ FORTRANMODFLAG, and $ FORTRANI NCFLAGS construction variables are included on this command line.

FORTRANPPCOMSTR
If set, the string displayed when aFortran sourcefileis compiled to an object file after first running thefilethrough
the C preprocessor. If not set, then $FORTRANPPCOM(the command line) is displayed.

FORTRANPPFI LESUFFI XES
Thelist of file extensions for which the compilation + preprocessor pass for FORTRAN dialect will be used. By
default, thisis[" . fpp', '.FPP"]

FORTRANSUFFI XES
The list of suffixes of files that will be scanned for Fortran implicit dependencies (INCLUDE lines and USE
statements). The default list is:

[".f", " F", ".for", ".FOR', ".ftn", ".FTN', ".fpp", ".FPP",
" f77", ".F77", ".f90", ".F90", ".f95", ".F95"]
FRAVEWORKPATH

On Mac OS X with gcc, a list containing the paths to search for frameworks. Used by the compiler to find
framework-style includes like #include <Fmwk/Header.h>. Used by the linker to find user-specified frameworks
when linking (see $FRAMEVORKS). For example:

env. AppendUni que(FRAMEWORKPATH=" #nyf r amewor kdi r ')

will add

Iy
=== SCONS 127

- Fnyf r amewor kdi r

to the compiler and linker command lines.

_ FRAVEWORKPATH
On Mac OS X with gec, an automatically-generated construction variable containing the linker command-line
options corresponding to SFRAVEWORKPATH.

FRAMEWORKPATHPREFI X
On Mac OS X with gcc, the prefix to be used for the FRAMEWORKPATH entries. (see SFRAVEWORKPATH).
The default valueis- F.

FRAMEWCORKPREFI X

On Mac OS X with gec, the prefix to be used for linking in frameworks (see $FRAMEWORKS). The default value
is-frameworKk.

FRAMEWORKS
On Mac OS X with gcc, alist of the framework names to be linked into a program or shared library or bundle.
The default value is the empty list. For example:

env. AppendUni que(FRAMEWORKS=Spl i t (' Syst em Cocoa SystemConfiguration'))

_ FRAMEWORKS
On Mac OS X with gcc, an automatically-generated construction variable containing the linker command-line
options for linking with FRAMEWORKS.

FRAMEWORKSFLAGS
On Mac OS X with gcc, general user-supplied frameworks options to be added at the end of a
command line building a loadable module. (This has been largely superseded by the $FRAVEWORKPATH,
$FRAVEVWORKPATHPREFI X, $FRAMEWORKPREFI X and $FRAMEWORKS variables described above.)

GS
The Ghostscript program used to, for example, convert PostScript to PDF files.

GSCoMm
The full Ghostscript command line used for the conversion process. Its default value is “$GS $GSFLAGS -
sQut put Fi | e=$TARGET $SOURCES".

GSCOVBTR
The string displayed when Ghostscript is called for the conversion process. If this is not set (the default), then
$GSCOM(the command line) is displayed.

GSFLAGS
General options passed to the Ghostscript program, when converting PostScript to PDF files for example. Its
default valueis“- dNOPAUSE - dBATCH - sDEVI CE=pdfwri t e”

HOST_ARCH
The name of the host hardware architecture used to create this construction environment. The platform code sets
this when initializing (see $PLATFORM and the pl at f or margument to Envi r onment). Note the detected
name of the architecture may not be identical to that returned by the Python pl at f or m nmachi ne method.

On the wi n32 platform, if the Microsoft Visual C++ compiler is available, msvc tool setup is done using
$HOST_ARCH and $TARGET_ARCH. Changing the values at any later time will not cause the tool to be
reinitialized. Valid host arch values are x86 and ar mfor 32-bit hosts and antl64 and x86_ 64 for 64-hit hosts.

Iy
=== SCONS 128

Should be considered immutable. $HOST _ARCHisnot currently used by other platforms, but the optionisreserved
to do soin future

HOST_CS
The name of the host operating system for the platform used to create this construction environment. The platform
code sets this when initializing (see $PLATFORMand the pl at f or margument to Envi r onnment).

Should be considered immutable. $HOST_OS is not currently used by SCons, but the option is reserved to do
so in future

| DLSUFFI XES
The list of suffixes of files that will be scanned for IDL implicit dependencies (#include or import lines). The
default listis:

[*.idl™, ".1DL"]

| MPLI BNOVERSI ONSYMLI NKS
Used to override $SHLI BNOVERSI ONSYMLI NKS/$LDMODULENOVERSI ONSYMLI NKS when creating
versioned import library for a shared library/loadable module. If not defined, then
$SHLI BNOVERSI ONSYM_I NKS/$L DMODUL ENOVERSI ONSYMLI NKS isused to determinewhether to disable
symlink generation or not.

| MPLI BPREFI X
The prefix used for import library names. For example, cygwin uses import libraries (I i bf oo. dl | . a) in
pair with dynamic libraries (cygf oo. dl |). The cygl i nk linker sets $1 MPLI BPREFI X to ' | i b' and
$SHLI BPREFI Xto' cyg' .

| MPLI BSUFFI X
The suffix used for import library names. For example, cygwin uses import libraries (1 i bf oo. dl | . a) in
pair with dynamic libraries (cygf oo. dl I). Thecygl i nk linker sets $| MPLI BSUFFI Xto' . dl|.a"' and
$SHLI BSUFFI Xto' . dl | ".

| MPLI BVERSI ON
Used to override $SHLI BVERSI ON$LDMODULEVERSI ON when generating versioned import library for a
shared library/loadable module. If undefined, the$SHLI BVERSI ON$L DMODUL EVERSI ONisused to determine
the version of versioned import library.

| MPLI CI T_COWVIVAND_DEPENDENCI ES
Controls whether or not SCons will add implicit dependencies for the commands executed to build targets.

By default, SConswill add to each target animplicit dependency on the command represented by thefirst argument
of any command line it executes (which is typically the command itself). By setting such a dependency, SCons
can determine that atarget should be rebuilt if the command changes, such as when a compiler is upgraded to a
new version. The specific file for the dependency is found by searching the PATH variable in the ENV dictionary
in the construction environment used to execute the command. The default is the same as setting the construction
variable$! MPLI CI T_COMVAND_DEPENDENCI EStoaTrue-likevalue(“true’, “yes’, or “1” - but not anumber
greater than one, as that has a different meaning).

Action strings can be segmented by the use of an AND operator, &&. In a segemented string, each segment is a
separate “ command line”, these are run sequentially until onefails or the entire sequence has been executed. If an
action string is segmented, then the selected behavior of $I MPLI CI T_COMVAND _DEPENDENCI ES is applied
to each segment.

If $I MPLI CI T_COMVAND_DEPENDENCI ES is set to a False-like value (“none”, “false’, “no”, “0”, etc.), then
the implicit dependency will not be added to the targets built with that construction environment.

Iy
=== SCONS 129

If $1 MPLI CI T_COVIVAND_DEPENDENCI ES is set to “2” or higher, then that number of arguments in the
command line will be scanned for relative or absolute paths. If any are present, they will be added as implicit
dependenciesto the targets built with that construction environment. The first argument in the command line will
be searched for using the PATH variable in the ENV dictionary in the construction environment used to execute
the command. The other arguments will only be found if they are absolute paths or valid paths relative to the
working directory.

If $I MPLI CI T_COMVAND_DEPENDENCI ES is set to “all”, then all arguments in the command line will be
scanned for relative or absolute paths. If any are present, they will be added asimplicit dependenciesto the targets
built with that construction environment. The first argument in the command line will be searched for using the
PATH variable in the ENV dictionary in the construction environment used to execute the command. The other
arguments will only be found if they are absolute paths or valid paths relative to the working directory.

env = Environment (I MPLI CI T_COMVAND_DEPENDENC!| ES=Fal se)

| NCPREFI X
The prefix used to specify an include directory on the C compiler command line. This will be prepended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_ CPPI NCFLAGS and
$_FORTRANI NCFLAGS variables are automatically generated.

| NCSUFFI X
The suffix used to specify an include directory on the C compiler command line. This will be appended to
each directory in the $CPPPATH and $FORTRANPATH construction variables when the $_ CPPI NCFLAGS and
$_FORTRANI NCFLAGS variables are automatically generated.

I NSTALL
A function to be called to install afile into a destination file name. The default function copies the file into the
destination (and sets the destination file's mode and permission bits to match the sourcefile's). The function takes
the following arguments:

def install (dest, source, env):

dest isthe path name of the destination file. sour ce isthe path name of the sourcefile. env isthe construction
environment (a dictionary of construction values) in force for thisfile installation.

| NSTALLSTR
The string displayed when afileisinstalled into a destination file name. The default is:

Install file: "$SOURCE" as "S$TARCET"

| NTEL_C_COWPI LER_VERSI ON
Set by thei nt el ¢ Tool to the major version number of the Intel C compiler selected for use.

JAR
The Java archive tool.

JARCHDI R
The directory to which the Java archive tool should change (using the - C option).

JARCOM
The command line used to call the Java archive tool.

JARCOVSTR
The string displayed when the Java archive tool is called If thisis not set, then $J ARCOM (the command line)
isdisplayed.

Iy
=== SCONS 130

env = Environnent (JARCOMSTR="JARchi vi ng $SOURCES i nto $TARGET")

JARFLAGS
General options passed to the Java archive tool. By default thisis set to cf to create the necessary jar file.

JARSUFFI X
The suffix for Javaarchives:. . j ar by default.

JAVABOOTCLASSPATH
Specifiesthe list of directories that will be added to the javac command line viathe - boot cl asspat h option.
The individual directory names will be separated by the operating system's path separate character (: on UNIX/
Linux/POSIX, ; on Windows).

JAVAC
The Java compiler.

JAVACCOM
The command line used to compile a directory tree containing Java source files to corresponding Java classfiles.
Any options specified in the $J AVACFLAGS construction variable are included on this command line.

JAVACCOMSTR
The string displayed when compiling a directory tree of Java source filesto corresponding Java classfiles. If this
is not set, then $J AVACCOM(the command line) is displayed.

env = Environnment (JAVACCOVSTR="Conpi |l ing class files $TARCGETS from $SOURCES")

JAVACFLAGS
General options that are passed to the Java compiler.

JAVACLASSDI R
The directory in which Java class files may be found. This s stripped from the beginning of any Java .classfile
names supplied to the JavaH builder.

JAVACLASSPATH
Specifies the list of directories that will be searched for Java . cl ass file. The directories in this list will be
added to the javac and javah command lines viathe - cl asspat h option. The individual directory names will
be separated by the operating system's path separate character (: on UNIX/Linux/POSIX, ; on Windows).

JAVACLASSSUFFI X
The suffix for Javaclassfiles; . ¢l ass by default.

JAVAH
The Java generator for C header and stub files.

JAVAHCOM
The command line used to generate C header and stub files from Java classes. Any options specified in the
$JAVAHFLAGS construction variable are included on this command line.

JAVAHCOMSTR
The string displayed when C header and stub files are generated from Java classes. If this is not set, then
$J AVAHCOM (the command line) is displayed.

env = Environnment (JAVAHCOVETR="Gener ati ng header/stub file(s) $TARGETS from $SOURCES")

Iy
=== SCONS 131

JAVAHFLAGS
General options passed to the C header and stub file generator for Java classes.

JAVAI NCLUDES
Include path for Java header files (such asjni.h)

JAVASOURCEPATH
Specifiesthelist of directoriesthat will be searched for input . j ava file. Thedirectoriesin thislist will be added
to the javac command line viathe - sour cepat h option. The individua directory names will be separated by
the operating system'’s path separate character (: on UNIX/Linux/POSIX, ; on Windows).

Note that this currently just adds the specified directory viathe - sour cepat h option. SCons does not currently
search the $J AVASOURCEPATH directories for dependency . j ava files.

JAVASUFFI X
The suffix for Javafiles; . j ava by default.

JAVAVERSI ON
Specifies the Java version being used by the Java builder. Set this to specify the version of Java targeted by the
javac compiler. This is sometimes necessary because Java 1.5 changed the file names that are created for nested
anonymous inner classes, which can cause a mismatch with the files that SCons expects will be generated by the
javac compiler. Setting $JAVAVERSI ON to a version greater than 1. 4 makes SCons realize that a build with
such acompiler is actually up to date. The default is 1. 4.

While thisis not primarily intended for selecting one version of the Java compiler vs. another, it does have that
effect on the Windows platform. A more precise approach is to set $J AVAC (and related construction variables
for related utilities) to the path to the specific Java compiler you want, if that is not the default compiler. On non-
Windows platforms, theal t er nat i ves system may provide away to adjust the default Java compiler without
having to specify explicit paths.

LATEX
The LaTeX structured formatter and typesetter.

LATEXCOM
The command line used to call the LaTeX structured formatter and typesetter.

LATEXCOVSETR
The string displayed when calling the LaTeX structured formatter and typesetter. If this is not set, then
SLATEXCOM(the command line) is displayed.

env = Environnment (LATEXCOVSTR = "Bui | di ng $TARGET from LaTeX i nput $SOURCES")

LATEXFLAGS
General options passed to the LaTeX structured formatter and typesetter.

LATEXRETRI ES
The maximum number of times that LaTeX will bere-run if the. | og generated by the $L ATEXCOMcommand
indicates that there are undefined references. The default isto try to resolve undefined references by re-running
LaTeX up to three times.

LATEXSUFFI XES
Thelist of suffixes of filesthat will be scanned for LaTeX implicit dependencies(\ i ncl ude or\i nport files).
The default listis:

[".tex", ".ltx", ".latex"]

Iy
=== SCONS 132

LDMODULE
The linker for building loadable modules. By default, thisis the same as $SHLI NK.

L DMODULECOM
The command linefor building loadable modules. On Mac OS X, this usesthe $L. DMODUL E, $L DMODUL EFLAGS
and $FRAMEWORKSFLAGS variables. On other systems, thisisthe same as $SHLI NK.

L DMODULECOVSTR
If set, the string displayed when building loadable modules. If not set, then $L DMODUL ECOM(the command line)
isdisplayed.

LDMODULEEM TTER
Contains the emitter specification for the Loadabl eModul e builder. The manpage section "Builder Objects’
contains general information on specifying emitters.

L DMODUL EFLAGS
General user options passed to the linker for building loadable modules.

L DMODUL ENOVERSI ONSYMLI NKS
Instructs the Loadabl eMbdul e builder to not automatically create symlinks for versioned modules. Defaults
to $SHLI BNOVERSI ONSYMLI NKS

L DMODUL EPREFI X
The prefix used for loadable module file names. On Mac OS X, thisis null; on other systems, this is the same
as $SHLI BPREFI X.

_ LDMODUL ESONAME
A macro that automatically generates loadable modules SONAME based on $TARGET,
$LDMODULEVERSION and $L DMODULESUFFIX. Used by Loadabl eMbdul e builder whenthelinker tool
supports SONAME (e.g. gnul i nk).

L DMODUL ESUFFI X
The suffix used for loadable module file names. On Mac OS X, thisis null; on other systems, this is the same
as $SHLIBSUFFIX.

L DMODULEVERSI ON
When this construction variable is defined, a versioned loadable module is created by Loadabl eModul e
builder. This activates the $_ L DMODUL EVERSI ONFLAGS and thus modifies the $L DMODUL ECOMas required,
adds the version number to the library name, and creates the symlinks that are needed. $L DMODULEVERSI ON
versions should exist in the same format as $SHLI BVERSI ON.

_LDMODULEVERSI ONFLAGS
This macro automatically introduces extra flags to $LDMODULECOM when building versioned
Loadabl eMbdul e (that is when $LDMODULEVERSI ON is set). _LDMODULEVERSI ONFLAGS usualy
adds $SHLI BVERSI ONFLAGS and some extra dynamically generated options (such as - W, - sonane=
$_LDMODULESONANME). It is unused by plain (unversioned) |oadable modules.

L DMODUL EVERSI ONFLAGS
Extraflags added to $L DMODUL ECOMwhen building versioned Loadabl eMbdul e. These flags are only used
when $LDMODULEVERSI ON is set.

LEX
Thelexical analyzer generator.

LEX_HEADER FI LE
If supplied, generate a C header file with the name taken from this variable. Will be emitted as a - - header -
fi | e= command-line option. Use thisin preference to including - - header - fi | e=in $LEXFLAGS directly.

Iy
=== SCONS 133

LEX_TABLES FI LE
If supplied, write the lex tablesto afile with the name taken from thisvariable. Will be emitted asa- - t abl es-
fi | e= command-line option. Use thisin preferenceto including - - t abl es-fi | e=in $LEXFLAGS directly.

LEXCOM
The command line used to call the lexical analyzer generator to generate a sourcefile.

LEXCOVBTR
The string displayed when generating a source file using the lexical analyzer generator. If thisis not set, then
$LEXCOM(the command line) is displayed.

env = Envi ronnment (LEXCOMBTR="Lex"' i ng $TARGET from $SOURCES")

LEXFLAGS
General options passed to the lexical analyzer generator. In addition to passing the value on during invocation, the
| ex tool also examinesthis construction variable for options which cause additional output files to be generated,
and adds those to the target list. Recognized for this purpose are GNU flex options - - header-fil e=and- -
t abl es-fi | e=; the output file is named by the option argument.

Notethat files specified by - - header-fi |l e=and- -t abl es-fi | e= may not be properly handled by SCons
in all situations. Consider using $LEX_HEADER _FI LE and $LEX_TABLES_FI LE instead.

LEXUNI STD
Used only on windows environments to set alex flag to prevent 'unistd.h' from being included. The default value
is'--nounistd'.

_LI BDI RFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
directories to be searched for library. The value of $_LI BDI RFLAGS is created by respectively prepending and
appending $L1 BDI RPREFI X and $LI BDI RSUFFI X to each directory in $LI BPATH.

LI BDI RPREFI X
The prefix used to specify alibrary directory on the linker command line. Thiswill be prepended to each directory
inthe $LI BPATH construction variable when the $_ L1 BDI RFLAGS variable is automatically generated.

LI BDI RSUFFI X
The suffix used to specify alibrary directory on the linker command line. Thiswill be appended to each directory
inthe $LI BPATH construction variable when the $_ L1 BDI RFLAGS variable is automatically generated.

LI BEM TTER
Contains the emitter specification for the St at i cLi br ary builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

_LI BFLAGS
An automatically-generated construction variable containing the linker command-line options for specifying
libraries to be linked with the resulting target. The value of $_LI BFLAGS is created by respectively prepending
and appending $LI BLI NKPREFI X and $L1 BLI NKSUFFI X to each filenamein $LI BS.

LI BLI NKPREFI X
The prefix used to specify alibrary to link on the linker command line. Thiswill be prepended to each library in
the $LI BS construction variable when the $_ L1 BFLAGS variable is automatically generated.

LI BLI NKSUFFI X
The suffix used to specify alibrary to link on the linker command line. This will be appended to each library in
the $L1 BS construction variable when the $_ LI BFLAGS variable is automatically generated.

Iy
=== SCONS 134

LI BPATH
Thelist of directoriesthat will be searched for libraries specified by the $LI BS construction variable. $LI BPATH
should be a list of path strings, or a single string, not a pathname list joined by Python's os. sep. Do not put
library search directives directly into $L1 NKFLAGS or $SHLI NKFLAGS as the result will be non-portable.

Note: directory namesin $L1 BPATHwill be looked-up relative to the directory of the SConscript file when they
are used inacommand. To force sconsto look-up adirectory relative to theroot of the source tree use the # prefix:

env = Environment (LI BPATH="#/11i bs")

The directory look-up can also be forced using the Di r function:

libs = Dir('libs")
env = Environment (LI BPATH=I i bs)

The directory list will be added to command lines through the automatically-generated $_LI BDI RFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$LI BDI RPREFI X and $LI BDI RSUFFI X construction variables to each directory in $LI BPATH. Any
command lines you define that need the $LI BPATH directory list should include $_LI| BDI RFLAGS:

env = Environnent (LI NKCOVE"ny_I| i nker $_LI BDI RFLAGS $_LI BFLAGS -0 $TARGET $SOURCE")

LI BPREFI X
The prefix used for (static) library file names. A default valueis set for each platform (posix, win32, 0s2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LI BPREFI XES
A list of all legal prefixes for library file names. When searching for library dependencies, SCons will ook for
files with these prefixes, the base library name, and suffixes from the $LI BSUFFI XES list.

LI BS
A list of one or more libraries that will be added to the link line for linking with any executable program, shared
library, or loadable module created by the construction environment or override.

String-valued library names should include only the library base names, without prefixessuch asl i b or suffixes
such as.so or . dl|. The library list will be added to command lines through the automatically-generated
$_LI BFLAGS construction variablewhichis constructed by respectively prepending and appending the val ues of
the$LI BLI NKPREFI X and $LI BLI NKSUFFI X construction variablesto each library namein $LI BS. Library
name strings should not include a path component, instead the compiler will be directed to look for librariesin
the paths specified by $LI BPATH.

Any command lines you define that need the $L1 BS library list should include $_ LI BFLAGS:

env = Environnment (LI NKCOVE"nmy_I i nker $_LI BDI RFLAGS $_LI BFLAGS -0 $TARGET $SOURCE")
If youadd aFi | e object to the $LI BSlist, the name of that file will be added to $_LI BFLAGS, and thusto the

link line, as-is, without $L1 BLI NKPREFI X or $LI BLI NKSUFFI X. For example:

env. Append(LIBS=Fil e(' /tnmp/ nylib.so"))

In all cases, scons will add dependencies from the executable program to all the librariesin thislist.

Iy
=== SCONS 135

LI BSUFFI X
The suffix used for (static) library file names. A default valueis set for each platform (posix, win32, 0s2, etc.), but
the value is overridden by individual tools (ar, mslib, sgiar, sunar, tlib, etc.) to reflect the names of the libraries
they create.

LI BSUFFI XES
A list of al legal suffixes for library file names. When searching for library dependencies, SCons will ook for
fileswith prefixes from the $L1 BPREFI XES lit, the base library name, and these suffixes.

LI CENSE
The abbreviated name, preferably the SPDX code, of the license under which this project is released
(GPL-3.0, LGPL-2.1, BSD-2-Clause e€tc.). See http://www.opensource.org/licenses/alphabetical [http://
www.opensource.org/licenses/alphabetical] for alist of license names and SPDX codes.

See the Package builder.

LI NESEPARATOR
The separator used by the Substfil e and Textfi |l e builders. This value is used between sources when
constructing the target. It defaults to the current system line separator.

LI NGUAS _FI LE
The $LI NGUAS_FI LE defines fileg(s) containing list of additional linguas to be processed by PO nit,
PQUpdat e or MOFi | es builders. It also affects Tr ans| at e builder. If the variable containsastring, it defines
name of the list file. The $L1 NGUAS_FI LE may be alist of file names as well. If $LI NGUAS_FI LE is set to
Tr ue (or non-zero numeric value), the list will be read from default file named LI NGUAS.

LI NK
The linker. See also $SHLI NK for linking shared objects.

On POSIX systems (those using the | i nk tool), you should normally not change this value as it defaults to a
"smart" linker tool which selects acompiler driver matching the type of sourcefilesin use. So for example, if you
set $CXX to a specific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

LI NKCOM
The command line used to link abject files into an executable. See a'so $SHLI NKCOMfor linking shared objects.

LI NKCOVBTR
If set, the string displayed when object filesarelinked into an executable. If not set, then $L1 NKCOM(the command
line) isdisplayed. See also $SHLI NKCOMBTR. for linking shared objects.

env = Environnment (LI NKCOVSTR = "Li nki ng $TARGET")

LI NKFLAGS
General user options passed to the linker. Note that this variable should not contain -1 (or similar) options
for linking with the libraries listed in $LI BS, nor - L (or similar) library search path options that scons
generates automatically from $LI1 BPATH. See $ LI BFLAGS above, for the variable that expands to library-
link options, and $_ L1 BDI RFLAGS above, for the variable that expands to library search path options. See also
$SHLI NKFLAGS. for linking shared objects.

The M4 macro preprocessor.

MACOM
The command line used to pass files through the M4 macro preprocessor.

Iy
=== SCONS 136

http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical
http://www.opensource.org/licenses/alphabetical

MACOVSTR
The string displayed when afile is passed through the M4 macro preprocessor. If thisis not set, then $MACOM
(the command line) is displayed.

MAFLAGS
General options passed to the M4 macro preprocessor.

MAKEI NDEX
The makeindex generator for the TeX formatter and typesetter and the LaTeX structured formatter and typesetter.

MAKEI NDEXCOM
The command line used to call the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter.

MAKEI NDEXCOVSTR
The string displayed when calling the makeindex generator for the TeX formatter and typesetter and the LaTeX
structured formatter and typesetter. If thisis not set, then $MAKEI NDEXCOM (the command line) is displayed.

MAKEI NDEXFLAGS
General options passed to the makeindex generator for the TeX formatter and typesetter and the LaTeX structured
formatter and typesetter.

MAXLI NELENGTH
The maximum number of characters allowed on an external command line. On Win32 systems, link lines longer
than this many characters are linked via a temporary file name.

M DL
The Microsoft IDL compiler.

M DLCOM
The command line used to pass files to the Microsoft IDL compiler.

M DLCOMSTR
The string displayed when the Microsoft IDL compiler iscalled. If thisis not set, then $M DLCOM(the command
line) is displayed.

M DLFLAGS
General options passed to the Microsoft IDL compiler.

MOSUFFI X
Suffix used for MOfiles (default: ' . mo'). Seensgf nt tool and MOFi | es builder.

MBGFMT
Absolute path to msgfmt(1) binary, found by Det ect () . Seensgf nt tool and MOFi | es builder.

MSG-MICOM
Complete command line to run msgfmt(1) program. See nsgf nmt tool and MOFi | es builder.

MBGFMICOMVBTR
String to display when msgfmt(1) isinvoked (default: ' ', which means ““print SMSGFMTCOM'). See nsgf nt
tool and MOFi | es builder.

MSGFMIFLAGS
Additional flags to msgfmt(1). See nsgf nt tool and MOFi | es builder.

MSG NI T
Path to msginit(1) program (found viaDet ect ()). Seensgi ni t tool and PQ ni t builder.

Iy
=== SCONS 137

MBG NI TCOM
Complete command line to run msginit(1) program. See nsgi ni t tool and PO ni t builder.

MBAE NI TCOVBTR
String to display when msginit(1) isinvoked (default: ' ' , which means print SMSA NI TCOM'). Seenrsgi ni t
tool and POl ni t builder.

M5GA NI TFLAGS
List of additional flags to msginit(1) (default: []). Seensgi ni t tool and PO ni t builder.

_MSG NI TLOCALE
Internal “macro”. Computes locae (language) name based on target filename (default:
" ${ TARGET. fi | ebase}’).

Seensgi ni t tool and PA ni t builder.

MSGVERGE
Absolute path to msgmer ge(1) binary asfound by Det ect () . Seensgner ge tool and POUpdat e builder.

MSGVERGECOM
Complete command line to run msgmer ge(1) command. See nsgner ge tool and POUpdat e builder.

MBGVERGECOMVBTR
String to be displayed when msgmer ge(1) isinvoked (default: ' ', which means ™ print $MSGVERGECOM'). See
nsgner ge tool and POUpdat e builder.

VMSGVERGEFLAGS
Additional flags to msgmerge(1) command. See msgrrer ge tool and POUpdat e builder.

MBSDK_DI R
Thedirectory containing the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.

MSSDK_VERSI ON
The version string of the Microsoft SDK (either Platform SDK or Windows SDK) to be used for compilation.
Supported versionsinclude 6. 1, 6. 0A, 6. 0, 2003R2 and 2003R1.

MSVC_BATCH

When set to any trueval ue, specifiesthat SCons should batch compilation of object fileswhen calling the Microsoft
Visual C/C++ compiler. All compilations of source files from the same source directory that generate target files
in a same output directory and were configured in SCons using the same construction environment will be built
in asingle cal to the compiler. Only source files that have changed since their object files were built will be
passed to each compiler invocation (via the $CHANGED SOURCES construction variable). Any compilations
where the object (target) file base name (minus the . obj) does not match the source file base name will be
compiled separately.

MBVC_NOTFOUND_PCLI CY
Specify the scons behavior when the Microsoft Visual C/C++ compiler is not detected.

The $MSVC_NOTFOUND_POQLI CY specifiesthe scons behavior when no msvc versions are detected or when the
requested msvc version is not detected.

The valid values for $MSVC_NOTFOUND_PQOLI CY and the corresponding scons behavior are:

"Error' or 'Exception'
Raise an exception when no msvc versions are detected or when the requested msvc version is not detected.

Iy
=== SCONS 138

"Warning' or 'warn’
Issue awarning and continue when no msvc versions are detected or when the requested msvc version is not
detected. Depending on usage, this could result in build failure(s).

"l gnore' or 'Suppress’
Take no action and continue when no msvc versions are detected or when the requested msvc version is not
detected. Depending on usage, this could result in build failure(s).

Note: in addition to the camel case values shown above, lower case and upper case values are accepted as well.
The $SMSVC_NOTFOUND_POLI CY is applied when any of the following conditions are satisfied:

» $MBVC_VERSI ON is specified, the default tools list isimplicitly defined (i.e., the tools list is not specified),
and the default tools list contains one or more of the msvc tools.

* $MBVC_VERSI ON is specified, the default tools list is explicitly specified (e.g., t ool s=["' default']),
and the default tools list contains one or more of the msvc tools.

» A non-default tools list is specified that contains one or more of the msvc tools (e.g., t ool s=[' nsvcC',
"melink']).

The $MSVC_NOTFOUND_POQOLI CY isignored when any of the following conditions are satisfied:

* $MBVC_VERSI ON is not specified and the default tools list is implicitly defined (i.e., the tools list is not
specified).

« $MSVC _VERSI ON is not specified and the default tools list is explicitly specified (eg.,
tool s=[' default']).

» A non-default tool list is specified that does not contain any of the msvc tools (e.g., t ool s=[' mi ngw]).
Important usage details:

* $IMBVC_NOTFOUND_PCLI CY must be passed as an argument to the Envi r onment constructor when an
msvc tool (e.g., msvc, nmeVS, €tc.) is loaded via the default tools list or via a tools list passed to the
Envi r onment constructor. Otherwise, $MSVC_NOTFOUND_POLI CY must be set before the first msvc tool
isloaded into the environment.

When $MSVC_NOTFQUND_POLI CY is not specified, the default scons behavior is to issue a warning and
continue subject to the conditions listed above. The default scons behavior may change in the future.

MSVC_SCRI PT_ARGS
Pass user-defined arguments to the Visual C++ batch file determined via autodetection.

$MBVC_SCRI PT_ARGS is available for msvc batch file arguments that do not have first-class support via
construction variables or when there is an issue with the appropriate construction variable validation. When
available, it is recommended to use the appropriate construction variables (e.g., SMSVC_TOOLSET_VERSI ON)
rather than SMSVC_SCRI PT_ARGS arguments.

Thevalid values for $MSVC_SCRI PT_ARGS are: None, astring, or alist of strings.

The $MBVC_SCRI PT_ARGS vaueis converted to ascalar string (i.e., "flattened"). The resulting scalar string, if
not empty, is passed as an argument to the msvc batch file determined via autodetection subject to the validation
conditions listed below.

$MBVC_SCRI PT_ARGS isignored when the value is None and when the result from argument conversionisan
empty string. The validation conditions below do not apply.

Iy
=== SCONS 139

An exception is raised when any of the following conditions are satisfied:
* $MSVC_SCRI PT_ARGS is specified for Visual Studio 2013 and earlier.
» Multiple SDK version arguments (e.g.,' 10. 0. 20348. 0') are specified in $MSVC_SCRI PT_ARGS.

 $MBVC SDK VERSI ON is specified and an SDK version argument (eg., ' 10.0.20348.0') is
specified in $MSVC_SCRI PT_ARGS. Multiple SDK version declarations via $MSVC_SDK_VERSI ON and
$MBVC _SCRI PT_ARGS are not allowed.

e Multiple toolset version arguments (eg., '-vcvars_ver=14.29') ae gpecified in
$MSVC_SCRI PT_ARGS.

+ $MSVC TOOLSET_VERSI ON is specified and a toolset verson argument (eg., -
vevars_ver=14. 29") is specified in $MSVC_SCRI PT_ARGS. Multiple toolset version declarations via
$MSVC_TOOLSET_VERSI ONand $MBVC_SCRI PT_ARGS are not allowed.

* Multiple spectre library arguments (e.g., ' -vcvars_spectre_l i bs=spectre') are specified in
$MSVC_SCRI PT_ARGS.

« $MBVC SPECTRE_ LIBS is enabled and a spectre library argument (eg., '-
vcvars_spectre_l i bs=spectre') is specified in $MSVC_SCRI PT_ARGS. Multiple spectre library
declarations via$MSVC_SPECTRE_LI BS and $MSVC_SCRI PT_ARGS are not allowed.

» Multiple UWP arguments (e.g., uwp or st or e) are specified in $MSVC_SCRI PT_ARGS.

« $MBVC_UWP_APP is enabled and a UWP argument (e.g., uwp or store) is specified in
$MBVC_SCRI PT_ARGS. Multiple UWP declarations via $MSVC_UWP_APP and $MSVC_SCRI PT_ARGS
are not alowed.

Example 1 - A Visua Studio 2022 build with an SDK version and a toolset version specified with a string
argument:

env = Environnment (MSVC VERSI ON=' 14. 3', MSVC_SCRI PT_ARGS=' 10. 0. 20348. 0 -vcvars_ver=14. 29

Example 2 - A Visual Studio 2022 build with an SDK version and atoolset version specified with alist argument:

env = Environment (MSVC_VERSI ON=' 14. 3', MSVC_SCRI PT_ARGS=["' 10. 0. 20348. 0', '-vcvars_ver=1
Important usage details:

» $MBVC_SCRI PT_ARGS must be passed as an argument to the Envi r onment constructor when an msvc
tool (e.g., nVC, MBVS, €tc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onnent
constructor. Otherwise, $MSVC_SCRI PT_ARGS must be set before the first msvc tool is loaded into the
environment.

* Other than checking for multiple declarations as described above, $MSVC_SCRI PT_ ARGS arguments are not
validated.

 Erroneous, inconsistent, and/or version incompatible SMSVC_SCRI PT_ARGS arguments are likely to result
in build failures for reasons that are not readily apparent and may be difficult to diagnose. The burdenison
the user to ensure that the arguments provided to the msvc batch file are valid, consistent and compatible with
the version of msvc selected.

MSVC_SCRI PTERROR_PCLI CY
Specify the scons behavior when Microsoft Visual C/C++ batch file errors are detected.

Iy
=== SCONS 140

The $MSVC_SCRI PTERROR_PCLI CY specifies the scons behavior when msvc batch file errors are detected.
When $MSVC_SCRI PTERROR_POLI CY is not specified, the default scons behavior is to suppress msvc batch
file error messages.

Theroot cause of msvc build failures may be difficult to diagnose. In these situations, setting the scons behavior
to issue a warning when msvc batch file errors are detected may produce additional diagnostic information.

Thevalid values for $MSVC_SCRI PTERROR_POLI CY and the corresponding scons behavior are:

"Error' or 'Exception'
Raise an exception when msvc batch file errors are detected.

"Warning' or 'Warn'
I ssue a warning when msvc batch file errors are detected.

"l gnore' or 'Suppress'
Suppress msvc batch file error messages.

Note: in addition to the camel case values shown above, lower case and upper case values are accepted as well.

Example 1 - A Visual Studio 2022 build with user-defined script arguments:

env = environment (MSVC VERSI ON=' 14. 3", MSVC _SCRI PT_ARGS=['8.1', 'store', '-vcvars_ver=1
env. Program(' hello', ['hello.c'], CCFLAGS='/MD , LIBS=['kernel32', 'user32', 'runtineob

Example 1 - Output fragment:

link /nologo /QUT: buil dOO1\ hel | 0. exe kernel 32.1ib user32.1ib runtineobject.lib _build0
LINK : fatal error LNK1104: cannot open file ' MSVCRT.Iib'

Example 2 - A Visua Studio 2022 build with user-defined script arguments and the script error policy set to issue
awarning when msvc batch file errors are detected:

env = environment (MSVC_VERSI ON=' 14. 3', MSVC SCRI PT_ARGS=['8.1', 'store', '-vcvars_ver=1
env. Progran('hello', ['hello.c'], CCFLAGS='/MD , LIBS=['kernel32', 'user32', 'runtineob

Example 2 - Output fragment:

scons: warning: vc script errors detected:

[ERROR vcvars. bat] The UWP Application Platformrequires a Wndows 10 SDK.

[ERROR vcvars. bat] WndowsSdkDir = "C.\Program Fil es (x86)\ W ndows Kits\8.1\"
[ERROR vcvars. bat] host/target architecture is not supported : { x64 , x64 }

link /nologo /QUT: buil doO1\ hel | 0. exe kernel 32.1ib user32.lib runtineobject.lib _build0
LINK : fatal error LNK1104: cannot open file ' MBVCRT. li b’

Important usage details:

* $MBVC_SCRI PTERROR_PCOLI CY must be passed as an argument to the Envi r onnment constructor when
an msvc tool (e.g., nsvc, NBVS, €tc.) is loaded via the default tools list or via a tools list passed to the

Iy
=== SCONS 141

Envi ronment constructor. Otherwise, $MSVC_SCRI PTERROR _POLI CY must be set before the first msve
tool isloaded into the environment.

* Due to scons implementation details, not all Windows system environment variables are propagated to the
environment in which the msvc batch file is executed. Depending on Visua Studio version and installation
options, non-fatal msvc batch file error messages may be generated for ancillary tools which may not affect
builds with the msvc compiler. For this reason, caution is recommended when setting the script error policy
toraise an exception (e.g.,"' Error').

MSVC_SDK_VERSI ON
Build with a specific version of the Microsoft Software Development Kit (SDK).

The valid values for $MSVC_SDK_VERSI ON are: None or a string containing the requested SDK version (e.g.,
' 10. 0. 20348. 0").

$MBVC_SDK_VERSI ONisignored when thevalueisNone and whenthe valueisan empty string. Thevalidation
conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:
» $MBVC_SDK_VERSI ONis specified for Visual Studio 2013 and earlier.

« $MBVC SDK VERSI ONis specified and an SDK version argument is specified in $MSVC_SCRI PT_ARGS.
Multiple SDK versiondeclarationsvia$MsVC_SDK_VERSI ONand $MSVC_SCRI PT_ARGS are not allowed.

* The $MBVC_SDK_VERSI ON specified does not match any of the supported formats:
e '10. 0. XXXXX. Y' [SDK 10.0]
« '8.1" [SDK 81]

» The system folder for the corresponding $MSVC_SDK_VERSI ON version is not found. The requested SDK
version does not appear to beinstalled.

* The $MSVC_SDK_VERSI ON version does not appear to support the requested platform type (i.e., UAP or
Deskt op). Therequested SDK version platform type components do not appear to be installed.

» The $MSVC_SDK_VERSI ONversion is 8. 1, the platform type is UWP, and the build tools selected are from
Visual Studio 2017 and later (i.e., $MSVC_VERSI ON must be '14.0' or $MBVC_TOOLSET_VERSI ON must
be '14.0").

Example 1 - A Visual Studio 2022 build with a specific Windows SDK version:

env = Environnment (MSVC_VERSI ON=' 14. 3', MSVC_SDK_VERSI ON=' 10. 0. 20348. 0')

Example 2 - A Visual Studio 2022 build with a specific SDK version for the Universal Windows Platform:

env = Envi ronnent (MSVC _VERSI ON=' 14. 3', MSVC_SDK_VERSI ON=' 10. 0. 20348. 0, MSVC_UWP_APP=Tr
Important usage details:

» $MBVC_SDK_VERSI ON must be passed as an argument to the Envi r onnent constructor when an msvc
tool (e.g., meVC, MBVS, €tc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onnment
constructor. Otherwise, $MSVC_SDK_VERSI ON must be set before the first msvc tool is loaded into the
environment.

Iy
=== SCONS 142

e Should a SDK 10.0 version be installed that does not follow the naming scheme above, the SDK version will
need to be specified via SMSVC_SCRI PT_ARGS until the version number validation format can be extended.

» Should an exception be raised indicating that the SDK version is not found, verify that the requested SDK
version isinstalled with the necessary platform type components.

» There is a known issue with the Microsoft libraries when the target architecture is ARM64 and a Windows
11 SDK (version' 10. 0. 22000. 0' and later) is used with the v141 build tools and older v142 toolsets
(versions' 14. 28. 29333" and earlier). Should build failures arise with these combinations of settings due
to unresolved symbols in the Microsoft libraries, $MSVC_SDK_VERSI ON may be employed to specify a
Windows 10 SDK (e.g.,"' 10. 0. 20348. 0') for the build.

MSVC_SPECTRE_LI BS
Build with the spectre-mitigated Visual C++ libraries.

Thevalid valuesfor $MSVC_SPECTRE_LI BS are: Tr ue, Fal se, or None.

When $MBVC_SPECTRE_LI BSisenabled (i.e., Tr ue), the Visual C++ environment will include the paths to
the spectre-mitigated implementations of the Microsoft Visual C++ libraries.

An exception is raised when any of the following conditions are satisfied:
¢ $MBVC_SPECTRE_LI BSisenabled for Visual Studio 2015 and earlier.

e $MBVC SPECTRE_LI BSisenabled and a spectre library argument is specified in SMSVC_SCRI PT_ARGS.
Multiple spectre library declarations via $MSVC_SPECTRE_LI BS and $MSVC_SCRI PT_ARGS are not
alowed.

» $MBVC_SPECTRE_LI BSisenabled and the platform type is UWP. There are no spectre-mitigated librariesfor
Universal Windows Platform (UWP) applications or components.

Example - A Visual Studio 2022 build with spectre mitigated Visual C++ libraries:

env = Environment (MSVC VERSI ON=' 14. 3", MSVC_SPECTRE LI BS=Tr ue)
Important usage details:

» $MBVC SPECTRE_LI BS must be passed as an argument to the Envi r onment constructor when an msvc
tool (e.g., nVC, MBVS, €tc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onnment
constructor. Otherwise, $MSVC_SPECTRE_LI BS must be set before the first msvc tool is loaded into the
environment.

 Additional compiler switches(e.g.,/ Qspect r e) arenecessary for including spectre mitigationswhen building
user artifacts. Refer to the Visual Studio documentation for details.

» The existence of the spectre libraries host architecture and target architecture folders are not verified when
$MSVC_SPECTRE_LI BSisenabled which could result in build failures. The burden is on the user to ensure
the requisite libraries with spectre mitigations are installed.

MBVC_TOOLSET_VERSI ON
Build with a specific Visual C++ toolset version.

Secifying $MSVC_TOOLSET_VERSI ON does not affect the autodetection and selection of msvc instances. The
$MBVC_TOOLSET_VERSI ONisapplied after an msvc instance is selected. This could be the default version of
msvc if $MSVC_VERSI ONis not specified.

Iy
=== SCONS 143

Thevalid valuesfor SMSVC_TOCOLSET_VERSI ONare: None or astring containing the requested tool set version
(eg. ' 14.29").

$MSVC_TOOLSET_VERSI ONis ignored when the value is None and when the value is an empty string. The
validation conditions below do not apply.

An exception is raised when any of the following conditions are satisfied:
e $MBVC TOOLSET_VERSI ONis specified for Visual Studio 2015 and earlier.

 $MBVC TOOLSET_VERSI ON is specified and a toolset version argument is specified in
$MSVC_SCRI PT_ARGS. Multiple toolset version declarations via $MSVC _TOOLSET VERSI ON and
$MBVC_SCRI PT_ARGS are not allowed.

e The SMSVC _TOOLSET_VERSI ON specified does not match any of the supported formats:
o ' XXY
o XX YY
o " XX YY. 227277

o "XX YY. Z' to' XX. YY. ZZZZ' [sconsextension not directly supported by the msvc batch files and may
be removed in the future]

" XX YY. ZZ. N [SxS format]
o " XX YY.ZZ. NN [SxSformat]

» The major msvc version prefix (i.e., ' XX. Y') of the SMSVC_TOOLSET_VERSI ON specified is for Visual
Studio 2013 and earlier (e.g.,' 12.0").

» The major msvc version prefix (i.e., ' XX. Y') of the $SMSVC_TOOLSET_VERSI ON specified is greater than
the msvc version selected (e.g., ' 99. 0').

» A system folder for the corresponding $MSVC_TOOLSET_VERSI ON version is not found. The requested
toolset version does not appear to beinstalled.

Toolset selection details:

* When $MSVC_TOOLSET_VERSI ONis not an SxS version number or a full toolset version number: the first
toolset version, ranked in descending order, that matchesthe SMBVC_TOOLSET _VERSI ON prefix is selected.

* When $MSVC_TOOLSET_VERSI ONis specified using the magjor msvc version prefix (i.e,,' XX. Y') and the
major msvc version is that of the latest release of Visual Studio, the selected toolset version may not be the
same as the default Visual C++ toolset version.

In the latest release of Visua Studio, the default Visual C++ toolset version is not necessarily the toolset with
the largest version number.

Example 1 - A default Visual Studio build with a partial toolset version specified:

env = Environnent (MSVC_TOOLSET_VERSI ON=' 14. 2')

Example 2 - A default Visual Studio build with a partial toolset version specified:

Iy
=== SCONS 144

env = Environnment (MSVC_TOCOLSET_VERSI ON=' 14. 29')

Example 3 - A Visual Studio 2022 build with afull toolset version specified:

env = Environment (MSVC_VERS|I ON=' 14. 3', MSVC _TOOLSET_VERSI ON=' 14. 29. 30133")

Example 4 - A Visual Studio 2022 build with an SxS toolset version specified:

env = Envi ronnent (MSVC_VERSI ON=' 14. 3', MSVC_TOOLSET_VERSI ON=' 14. 29. 16. 11')
Important usage details:

* $MBVC _TOCOLSET_VERSI ON must be passed as an argument to the Envi r onment constructor when an
msvc tool (e.g., mevc, NBVS, €tc.) is loaded via the default tools list or via a tools list passed to the
Envi r onment constructor. Otherwise, $MSVC_TOOLSET_VERSI ON must be set before the first msvc tool
isloaded into the environment.

» The existence of the toolset host architecture and target architecture folders are not verified when
$MBVC_TOOLSET_VERSI ONis specified which could result in build failures. The burden is on the user to
ensure the requisite tool set target architecture build tools are installed.

MBVC_USE_SCRI PT
Use a batch script to set up the Microsoft Visual C++ compiler.

If set to the name of aVisual Studio . bat file (e.g. vcvar s. bat), SConswill run that batch file instead of the
auto-detected one, and extract the relevant variables from the result (typically %8 NCLUDEY, %41 B% and %4°ATH
99 for supplying to the build. This can be useful to force the use of acompiler version that SCons does not detect.
$MBVC _USE_SCRI PT_ARGS provides arguments passed to this script.

Setting $MSVC_USE_SCRI PT to None bypasses the Visua Studio autodetection entirely; use this if you are
running SCons in a Visual Studio cmd window and importing the shell's environment variables - that is, if you
are sure everything is set correctly already and you don't want SCons to change anything.

$MBVC_USE_SCRI PT ignores $MSVC_VERSI ONand $TARGET _ARCH.

MBVC_USE_SCRI PT_ARGS
Provides arguments passed to the script $MSVC_USE_SCRI PT.

MSVC_USE_SETTI NGS
Use adictionary to set up the Microsoft Visual C++ compiler.

$MBVC _USE_SETTINGS is ignored when $MSVC USE SCRI PT is defined andior when
$MBVC USE SETTI NGSisset to None.

The dictionary is used to populate the environment with the relevant variables (typically %8 NCLUDEY %41 B%
and YPATHY) for supplying to the build. This can be useful to force the use of acompiler environment that SCons
does not configure correctly. This is an aternative to manually configuring the environment when bypassing
Visual Studio autodetection entirely by setting $MSVC_USE_SCRI PT to None.

Here is an example of configuring a build environment using the Microsoft Visual C/C++ compiler included in
the Microsoft SDK on a 64-bit host and building for a 64-bit architecture;

Mcrosoft SDK 6.0 (MSVC 8.0): 64-bit host and 64-bit target
msvc_use_settings = {

Iy
=== SCONS 145

"PATH': [
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. O\\ VQ\\ Bi n\\ x64",
"C:\\Program Fi |l es\\ M crosoft SDKs\\W ndows\\v6. O\\ Bi n\\ x64",
"C:\\Program Fi |l es\\ M crosoft SDKs\\W ndows\\v6. O\\ Bi n",
"C:\\Wndows\\ M crosof t. NET\\ Framewor k\\ v2. 0. 50727",
"C:\\ W ndows\ \ syst enB2",
"C\\Wndows",
"C:\\ Wndows\ \ Syst enB2\ \ Whent',
"C:\\ W ndows\ \ Syst enB82\ \ W ndows Power Shel | \\ v1. O\ \"
1
"1 NCLUDE": [
"C:\\Program Fi |l es\\ M crosoft SDKs\\W ndows\\v6. O\\ V& \ | ncl ude",
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. O\\ V& \ | ncl ude\\ Sys",
"C:\\Program Fi |l es\\ M crosoft SDKs\\W ndows\\v6. O\\ I ncl ude",
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. O\\ I ncl ude\\gl ",
1
“LIB": [
"C:\\Program Fi | es\\ M crosoft SDKs\\W ndows\\v6. O\\ VQ\\ Li b\ \ x64",
"C:\\Program Fi |l es\\ M crosoft SDKs\\W ndows\\v6. O\\Li b\\ x64",
1
“LI BPATH': [],
"VSCMD_ARG app_plat": [],
“VCI NSTALLDIR": [],
"VCTool sinstallDir": []

}

Specifying MSVC VERSI ON i s recomended
env = Environment (MSVC VERSI ON=' 8. 0', MSVC USE_SETTI NGS=nsvc_use_setti ngs)

Important usage details:

* $MSVC_USE_SETTI NGS must be passed as an argument to the Envi r onnent constructor when an msvc
tool (e.g., meVC, MBVS, €tc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onment
constructor. Otherwise, $MSVC_USE_SETTI NGS must be set before the first msvc tool is loaded into the
environment.

» Thedictionary content requirements are based on the internal msvc implementation and therefore may change
at any time. The burden is on the user to ensure the dictionary contents are minimally sufficient to ensure
successful builds.

MBVC_UWP_APP
Build with the Universal Windows Platform (UWP) application Visual C++ libraries.

Thevalid valuesfor $MSVC_UWP_APP are: True,' 1' , Fal se,' 0", or None.

When $MBVC_UWP_APP isenabled (i.e., True or' 1'), the Visua C++ environment will be set up to point to
the Windows Store compatible libraries and Visual C++ runtimes. In doing so, any libraries that are built will be
ableto be used in a UWP App and published to the Windows Store.

An exception is raised when any of the following conditions are satisfied:

« SMBVC UWP_APP isenabled for Visual Studio 2013 and earlier.

e $MBVC _UWP_APP is enabled and a UWP argument is specified in $MSVC_SCRI PT_ARGS. Multiple UWP
declarations via$MSVC_UWP_APP and $MSVC_SCRI PT_ARGS are not allowed.

Iy
=== SCONS 146

Example - A Visual Studio 2022 build for the Universal Windows Platform:;

env = Environnment (MSVC VERSI ON=' 14. 3", MSVC_UWP_APP=Tr ue)

Important usage details:

* $MBVC_UWP_APP must be passed as an argument to the Envi r onment constructor when an msvc tool (e.g.,
nevC, VS, etc.) isloaded viathe default toolslist or viaatoolslist passed tothe Envi r onment constructor.

Otherwise, SMBVC_UWP_APP must be set before the first msvc tool isloaded into the environment.

» The existence of the UWP libraries is not verified when $MSVC_UWP_APP is enabled which could result in

build failures. The burden is on the user to ensure the requisite UWP libraries are installed.

M5VC_VERSI ON

Sets the preferred version of Microsoft Visual C/C++ to use.

If SMSVC_VERSI ONisnot set, SConswill (by default) select thelatest version of Visual C/C++ installed on your

system. If the specified version isn't installed, tool initialization will fail.

$MBVC_VERSI ON must be passed as an argument to the Envi r onnment constructor when an msvc tool (e.g.,
nsvc, NBVS, etc.) isloaded viathe default toolslist or viaatoolslist passed to the Envi r onnment constructor.

Otherwise, SMSVC_VERSI ON must be set before the first msvc tool is loaded into the environment.

Valid values for Windows are 14. 3, 14. 2, 14. 1, 14. 1Exp, 14. 0, 14. OExp, 12. 0, 12. OExp, 11. 0O,
11. OExp, 10. 0,10. OExp, 9. 0,9. OExp, 8. 0,8. OEXp,7.1,7. 0,and 6. 0. Versionsending in Exp refer

to "Express' or "Express for Desktop" editions.

MSVS

When the Microsoft Visual Studio tools are initialized, they set up this dictionary with the following keys:

VERSION
the version of MSV S being used (can be set via$MSVS_VERSI ON)

VERSIONS
the available versions of MSVSinstaled

VCINSTALLDIR
installed directory of Visual C++

VSINSTALLDIR
installed directory of Visua Studio

FRAMEWORKDIR
installed directory of the .NET framework

FRAMEWORKVERSIONS
list of installed versions of the .NET framework, sorted |atest to oldest.

FRAMEWORKVERSION
|atest installed version of the .NET framework

FRAMEWORKSDKDIR
installed location of the .NET SDK.

PLATFORMSDKDIR
installed location of the Platform SDK.

~

'—‘—' SCONS

147

PLATFORMSDK_MODULES
dictionary of installed Platform SDK modules, where the dictionary keys are keywords for the various
modules, and the values are 2-tuples where the first is the release date, and the second is the version number.

If avalueis not set, it was not availablein the registry.

MBVS_ARCH
Sets the architecture for which the generated project(s) should build.

Thedefault valueisx86. and64 isalso supported by SConsfor most Visual Studio versions. Since Visual Studio
2015 ar mis supported, and since Visual Studio 2017 ar n64 is supported. Trying to set $MSVS_ARCH to an
architecture that's not supported for agiven Visual Studio version will generate an error.

MBVS_PRQJECT_GUI D
The string placed in agenerated Microsoft Visual Studio project file asthe value of the Pr oj ect GUI D attribute.
Thereis no default value. If not defined, anew GUID is generated.

MSVS_SCC AUX_PATH
The path name placed in a generated Microsoft Visual Studio project file as the value of the SccAuxPat h
attribute if the MSVS_SCC_PROVI DER construction variableis also set. Thereis no default value.

MBVS_SCC_CONNECTI ON_ROOT

The root path of projects in your SCC workspace, i.e the path under which al project and solution
files will be generated. It is used as a reference path from which the relative paths of the generated
Microsoft Visual Studio project and solution files are computed. The relative project file path is
placed as the value of the ScclLocal Pat h attribute of the project file and as the values of the
SccProj ect Fi | ePat hRel ati vi zedFr omConnection[i] (where [i] ranges from O to the number
of projects in the solution) attributes of the @ obal Sect i on(Sour ceCodeCont r ol) section of the
Microsoft Visual Studio solution file. Similarly the relative solution file path is placed as the values of the
ScclLocal Pat h[i] (where [i] ranges from O to the number of projects in the solution) attributes of the
d obal Secti on(Sour ceCodeCont r ol) section of the Microsoft Visua Studio solution file. Thisis used
only if the MBVS_SCC_PROVI DER construction variable is also set. The default value is the current working
directory.

MBVS_SCC _PRQIECT_NAME
The project name placed in a generated Microsoft Visual Studio project file as the value of the
SccPr oj ect Nane attribute if the MSVS_SCC_PROVI DER construction variable is also set. In this case the
string isalso placed in the SccPr oj ect NaneO0 attribute of thed obal Sect i on(Sour ceCodeCont r ol)
section of the Microsoft Visual Studio solution file. Thereis no default value.

MBVS_SCC_PROVI DER
The string placed in agenerated Microsoft Visual Studio project file asthe value of the SccPr ovi der attribute.
Thestring isalso placed inthe SccPr ovi der O attribute of thed obal Sect i on(Sour ceCodeCont r ol)
section of the Microsoft Visual Studio solution file. Thereis no default value.

MBVS_VERSI ON
Setsthe preferred version of Microsoft Visual Studio to use.

If $MBVS_VERSI ONisnot set, SConswill (by default) select thelatest version of Visual Studio installed on your
system. So, if you have version 6 and version 7 (MSVS .NET) installed, it will prefer version 7. Y ou can override
this by specifying the MSVS_VERSI ON variable in the Environment initialization, setting it to the appropriate
version ('6.0" or '7.0', for example). If the specified version isn't installed, tool initialization will fail.

This is obsolete: use $MSVC_VERSI ON instead. If $MSVS_ VERSI ON is set and $MSVC_VERSI ON is not,
$MBVC_VERSI ONwill be set automatically to $MSVS_VERSI ON. If both are set to different values, scons will
raise an error.

Iy
=== SCONS 148

MBVSBUI LDCOM
The build command line placed in a generated Microsoft Visual Studio project file. The default isto have Visual
Studio invoke SCons with any specified build targets.

MBVSCLEANCOM
The clean command line placed in a generated Microsoft Visua Studio project file. The default isto have Visual
Studio invoke SCons with the -c option to remove any specified targets.

MBVSENCODI NG
The encoding string placed in a generated Microsoft Visual Studio project file. The default is encoding
W ndows- 1252.

MBVSPRQJECTCOM
The action used to generate Microsoft Visual Studio project files.

MBVSPRQJECTSUFFI X
The suffix used for Microsoft Visual Studio project (DSP) files. Thedefault valueis. vepr oj whenusing Visual
Studio version 7.x (.NET) or later version, and . dsp when using earlier versions of Visual Studio.

MBVSREBUI LDCOM
Therebuild command line placed in agenerated Microsoft Visual Studio project file. The default isto have Visual
Studio invoke SCons with any specified rebuild targets.

MBVSSCONS
The SCons used in generated Microsoft Visual Studio project files. The default is the version of SCons being
used to generate the project file.

MBVSSCONSCOM
The default SCons command used in generated Microsoft Visual Studio project files.

MBVSSCONSCRI PT
The sconscript file (that is, SConst ruct or SConscr i pt file) that will be invoked by Visual Studio project
files (through the $MSVSSCONSCOMvariable). The default is the same sconscript file that contains the call to
MSVSPr oj ect to build the project file.

MBVSSCONSFLAGS
The SCons flags used in generated Microsoft Visual Studio project files.

MBVSSCOLUTI ONCOM
The action used to generate Microsoft Visual Studio solution files.

MBVSSCOLUTI ONSUFFI X
The suffix used for Microsoft Visua Studio solution (DSW) files. The default valueis. sl n when using Visual
Studio version 7.x (.NET), and . dswwhen using earlier versions of Visual Studio.

MT
The program used on Windows systems to embed manifests into DLLs and EXEs. See aso
$W NDOWNS_EMBED MANI FEST.

MIEXECOM
The Windows command line used to embed manifests into executables. See also $MI'SHLI BCOM

MIFLAGS
Flags passed to the $MTI' manifest embedding program (Windows only).

MI'SHLI BCOM
The Windows command line used to embed manifests into shared libraries (DLLS). See also $MIEXECOM

Iy
=== SCONS 149

MACW VERSI ON
The version number of the Metrowerks CodeWarrior C compiler to be used.

MACW VERSI ONS
A list of installed versions of the MetroWerks CodeWarrior C compiler on this system.

NANMVE
Specfies the name of the project to package.

Seethe Package builder.

NI NJA ALl AS NAME
The name of the alias target which will cause SConsto create the ninjabuild file, and then (optionally) run ninja.
The default valueisgener at e- ni nj a.

NI NJA_CMVD_ARGS
A string which will pass arguments through SConsto the ninjacommand when scons executes ninja. Has no effect
if NI NJA_DI SABLE_AUTO_RUNis set.

This value can also be passed on the command line;

scons NI NJA CVD_ARGS=- v
or
scons NI NJA CMD ARGS="-v -j 3"

NI NJA_COVPDB_EXPAND
Boolean value to instruct ninja to expand the command line arguments normally put into response files. If true,
prevents unexpanded lines in the compilation database like “gcc @ sp_fi | €” and instead yields expanded
lineslike“gcc -c -o nyfile.o nyfile.c -la -DXYZ".

Ninja's compdb tool added the - x flag in NinjaV1.9.0

NI NJA_DEPFI LE_PARSE_FORVAT
Determines the type of format ninja should expect when parsing header include depfiles. Can be msvc, gcc, or
cl ang. The nsvc option corresponds to / showi ncl udes format, and gcc or ¢l ang correspond to - MVD
- MR

NI NJA DI R
Thebui | ddi r value. Propagatesdirectly into the generated ninjabuild file. From Ninja'sdocs: “ A directory for
some Ninjaoutput files. ... (You can also store other build output in thisdirectory.) ” Thedefault valueis. ni nj a.

NI NJA DI SABLE_AUTO_RUN
Boolean. Default: Fal se. If true, SCons will not run ninja automatically after creating the ninja build file.

If not explicitly set, this will be set to True if --disable_execute_ninja or
Set Opti on(' di sabl e_execute_ninja', True) isseen.

NI NJA_ENV_VAR_CACHE
A string that sets the environment for any environment variables that differ between the OS environment and the
SCons execution environment.

It will be compatible with the default shell of the operating system.

If not explicitly set, SCons will generate this dynamically from the execution environment stored in the current
construction environment (e.g. env[' ENV']) where those values differ from the existing shell..

Iy
=== SCONS 150

NI NJA_FI LE_NAME
The filename for the generated Ninja build file. The default isni nj a. bui | d.

NI NJA_FORCE_SCONS_BUI LD
If true, causes the build nodes to callback to scons instead of using ninja to build them. This is intended to be
passed to the environment on the builder invocation. It is useful if you have a build node which does something
which isnot easily translated into ninja.

NI NJA_GENERATED_SOURCE_ALI AS_NAME
A string matching the name of a user defined alias which represents a list of all generated sources. This will
prevent the auto-detection of generated sources from $NI NJA_ GENERATED SOURCE_SUFFI XES. Then all
other sourcefileswill be madeto depend onthisinthe ninjabuild file, forcing the generated sourcesto bebuilt first.

NI NJA_ GENERATED_ SOURCE_SUFFI XES
The list of source file suffixes which are generated by SCons build steps. All source files which match these
suffixeswill be added to the _generated_sources aliasin the output ninjabuild file. Then all other sourcefileswill
be made to depend on thisin the ninja build file, forcing the generated sources to be built first.

NI NJA_MSVC DEPS_PREFI X
The msvc_deps_pr efi x string. Propagates directly into the generated ninja build file. From Ninja's docs:
“defines the string which should be stripped from msvc's/ showl ncl udes output”

NI NJA POOL
Set theni nj a_pool for thisor all targetsin scope for this env var.

NI NJA REGENERATE_DEPS
A generator function used to create a ninja depfile which includes al the files which would require SCons to be
invoked if they change. Or alist of said files.

_NI NJA_REGENERATE_DEPS FUNC
Internal value used to specify the function to call with argument env to generate the list of fileswhich if changed
would require the ninja build file to be regenerated.

NI NJA_SCONS_DAEMON_KEEP_ALI VE
The number of seconds for the SCons deamon launched by ninjato stay alive. (Default: 180000)

NI NJA_SCONS_DAEMON_PORT
The TCP/IP port for the SCons daemon to listen on. NOTE: You cannot use a port already being listened to on
your build machine. (Default: random number between 10000,60000)

NI NJA_ SYNTAX
Thepathto acustomni nj a_synt ax. py filewhichisused in generation. Thetool currently assumesyou have
ninja installed as a Python module and grabs the syntax file from that installation if $NI NJA SYNTAX is not
explicitly set.

no_inmport |ib
When set to non-zero, suppresses creation of acorresponding Windows static import lib by the Shar edLi br ary
builder when used with MinGW, Microsoft Visual Studio or Metrowerks. This also suppresses creation of an
export (. exp) file when using Microsoft Visual Studio.

OBJPREFI X
The prefix used for (static) object file names.

OBJ SUFFI X
The suffix used for (static) object file names.

Iy
=== SCONS 151

PACKAGEROOT
Specifiesthedirectory whereall filesinresulting archivewill beplaced if applicable. The default valueis” SNANME-
$VERSI ON'.

Seethe Package builder.

PACKAGETYPE
Selects the package type to build when using the Package builder. May be a string or list of strings. See the
docuentation for the builder for the currently supported types.

$PACKAGETYPE may be overridden with the - - package- t ype command line option.
Seethe Package builder.

PACKAGEVERSI ON
The version of the package (not the underlying project). This is currently only used by the rpm packager and
should reflect changes in the packaging, not the underlying project code itself.

Seethe Package builder.

PCH
The Microsoft Visual C++ precompiled header that will be used when compiling object files. This variable is
ignored by tools other than Microsoft Visual C++. When this variable is defined SCons will add options to the
compiler command line to cause it to use the precompiled header, and will also set up the dependencies for the
PCH file. Example:

env['PCH] = File(' StdAfx.pch")

PCHCOM
The command line used by the PCH builder to generated a precompiled header.

PCHCOVSTR
The string displayed when generating a precompiled header. If thisis not set, then $PCHCOM (the command line)
isdisplayed.

PCHPDBFLAGS
A construction variablethat, when expanded, addsthe/ y Dflag to the command lineonly if the $PDB construction
variableis set.

PCHSTOP
This variable specifies how much of a source file is precompiled. This variable is ignored by tools other than
Microsoft Visual C++, or when the PCH variableis not being used. When thisvariableis defineit must be astring
that is the name of the header that is included at the end of the precompiled portion of the source files, or the
empty string if the "#pragma hrdstop" construct is being used:

env[' PCHSTOP'] = ' StdAfx. h'

PDB
The Microsoft Visual C++ PDB file that will store debugging information for object files, shared libraries, and
programs. This variable is ignored by tools other than Microsoft Visual C++. When this variable is defined
SCons will add options to the compiler and linker command line to cause them to generate external debugging
information, and will also set up the dependencies for the PDB file. Example:

env['PDB'] = 'hello.pdb’

Iy
=== SCONS 152

The Visual C++ compiler switch that SCons uses by default to generate PDB information is/ Z7. This works
correctly with parallé (-) builds because it embeds the debug information in the intermediate object files,
as opposed to sharing a single PDB file between multiple object files. This is aso the only way to get debug
information embedded into a static library. Using the / Zi instead may yield improved link-time performance,
although parallel builds will no longer work. Y ou can generate PDB files with the/ Zi switch by overriding the
default $CCPDBFLAGS variable; see the entry for that variable for specific examples.

PDFLATEX
The pdflatex utility.

PDFLATEXCOM
The command line used to call the pdflatex utility.

PDFLATEXCOVETR
The string displayed when calling the pdflatex utility. If thisis not set, then $PDFLATEXCOM(the command line)
isdisplayed.

env = Environnment (PDFLATEX; COVSTR = "Bui | di ng $TARGET from LaTeX i nput $SOURCES")

PDFLATEXFLAGS
General options passed to the pdflatex utility.

PDFPREFI X
The prefix used for PDF file names.

PDFSUFFI X
The suffix used for PDF file names.

PDFTEX
The pdftex utility.

PDFTEXCOM
The command line used to call the pdftex utility.

PDFTEXCOVSTR
The string displayed when calling the pdftex utility. If this is not set, then $PDFTEXCOM (the command line)
isdisplayed.

env = Environnment (PDFTEXCOVBTR = "Bui | di ng $TARGET from TeX i nput $SOURCES")

PDFTEXFLAGS
General options passed to the pdftex utility.

PKGCHK
On Solaris systems, the package-checking program that will be used (along with $PKGA NFO) to look for installed
versions of the Sun PRO C++ compiler. The default is/ usr / sbi n/ pgkchk.

PKG NFO
On Solaris systems, the package information program that will be used (along with $PKGCHK) to | ook for installed
versions of the Sun PRO C++ compiler. The default ispkgi nf o.

PLATFORM
The name of the platform used to create this construction environment. SCons sets this when initializing the
platform, which by default is auto-detected (see the pl at f or margument to Envi r onrent).

Iy
=== SCONS 153

env = Environment (tool s=[])

if env[' PLATFORM] == 'cygwi n':
Tool (" m ngw) (env)

el se:
Tool (" nsvc') (env)

POAUTO NI T
The$POAUTA NI T variable, if setto Tr ue (on non-zero numeric value), let thensgi ni t tool to automatically
initialize missing PO files with msginit(1). This applies to both, POl ni t and POUpdat e builders (and others
that use any of them).

POCREATE_ALI AS
Common alias for all POfiles created with POl ni t builder (default: ' po- creat e'). Seensgi ni t tool and
PA ni t builder.

POSUFFI X
Suffix used for POfiles (default: * . po') Seensgi ni t tool and PO ni t builder.

POTDOVAI N
The $PCTDOVAI N defines default domain, used to generate POT filename as SPOTDOVAI N. pot when no POT
filenameis provided by the user. This appliesto POTUpdat e, PO ni t and POUpdat e builders (and builders,
that usethem, e.g. Tr ansl at e). Normally (if SPOTDOVAI Nis not defined), the buildersuse mressages. pot
as default POT file name.

POTSUFFI X
Suffix used for PO Template files (default: ' . pot '). Seexget t ext tool and POTUpdat e builder.

POTUPDATE_ALI AS
Name of the common phony target for all PO Templates created with POUpdat e (default: ' pot - updat e').
Seexget t ext tool and POTUpdat e builder.

POUPDATE_ALI AS
Common aliasfor al POfiles being defined with POUpdat e builder (default: ' po- updat e'). Seensgner ge
tool and POUpdat e builder.

PRI NT_CMD_LI NE_FUNC
A Python function used to print the command lines as they are executed (assuming command printing is not
disabled by the - q or - s options or their equivalents). The function must accept four arguments: s, t ar get ,
sour ce and env. s isa string showing the command being executed, t ar get , is the target being built (file
node, list, or string name(s)), sour ce, is the source(s) used (file node, list, or string name(s)), and env isthe
environment being used.

The function must do the printing itself. The default implementation, used if this variable is not set or is None,
istojust print the string, asin:
def print_cnd |ine(s, target, source, env):
sys.stdout.wite(s + "\n")
Here is an example of a more interesting function:

def print_cnd_|ine(s, target, source, env):
sys. stdout . write(

Iy
=== SCONS 154

"Building %6 -> %...\n"

% (
" and '.join([str(x) for x in source]),
'"‘and '.join([str(x) for x in target]),
)
)
env = Environment (PRI NT_CVD LI NE FUNC=print_cnd_| i ne)
env. Program(' foo', ['foo.c', '"bar.c'])
This prints:

scons: Building targets ...

Bui |l di ng bar.c -> bar.o...

Bui |l ding foo.c -> foo.o0...

Bui | di ng foo.o and bar.o -> foo...
scons: done buil ding targets.

Another example could be afunction that logs the actual commandsto afile.

PROGEM TTER
Contains the emitter specification for the Pr ogr ambuilder. The manpage section "Builder Objects’ contains
genera information on specifying emitters.

PROGPREFI X
The prefix used for executable file names.

PROGSUFFI X
The suffix used for executable file names.

PSCom
The command line used to convert TeX DVI filesinto a PostScript file.

PSCOVSTR
The string displayed when a TeX DVI fileis converted into a PostScript file. If thisis not set, then $PSCOM(the
command line) is displayed.

PSPREFI X
The prefix used for PostScript file names.

PSSUFFI X
The prefix used for PostScript file names.

QI_AUTOSCAN
Turn off scanning for mocable files. Use the Mbc Builder to explicitly specify filesto run moc on.

Qr_BI NPATH
The path where the Qt binaries are installed. The default valueis'$QTDI R/ bi n'.

Qr_CPPPATH
The path where the Qt header files are installed. The default value is '$QTDI R/include. Note: If you set this
variableto None, the tool won't change the $CPPPATH construction variable.

QT_DEBUG
Prints lots of debugging information while scanning for moc files.

Iy
=== SCONS 155

Qr_ LB
Default valueis' gt ' . You may want to set thisto' gt - nt ' . Note: If you set this variable to None, the tool

won't change the $L1 BS variable.

Qr_LI BPATH
The path where the Qt libraries are installed. The default value is'$QTDI R/ | i b'. Note: If you set this variable
to None, the tool won't change the $LI BPATH construction variable.

Qr_moC
Default valueis'$QT_BI NPATH noc'.

QT_MOCCXXPREFI| X
Default valueis' ' . Prefix for moc output files when sourceis a C++ file.

QT_MOCCXXSUFFI X
Default valueis' . noc' . Suffix for moc output files when sourceis a C++ file.

QTI_MOCFROMCXXCOM
Command to generate a moc file from a C++ file.

QTI_MOCFROMCXXCOMSTR
The string displayed when generating amoc file from a C++ file. If thisis not set, then $QT_ MOCFROMCXXCOM
(the command line) is displayed.

QT_MOCFROMCXXFLAGS
Default valueis' -i ' . These flags are passed to moc when moccing a C++ file.

QT_MOCFROVHCOM
Command to generate a moc file from a header.

Qr_MOCFROVHCOMBTR
The string displayed when generating a moc file from a C++ file. If thisis not set, then $QT_MOCFROVHCOM
(the command line) is displayed.

QI_MOCFROVHFLAGS
Default valueis' ' . These flags are passed to moc when moccing a header file.

QI _MOCHPREFI X
Default valueis' moc_

. Prefix for moc output files when sourceis a header.

QT _MOCHSUFFI X
Default value is'$CXXFI LESUFFI X'. Suffix for moc output files when source is a header.

Qr_uc
Default valueis'$QT_BI NPATH ui c'.

Qr_ul ccom
Command to generate header filesfrom . ui files.

QT_Ul CCOVBTR
The string displayed when generating header files from . ui files. If this is not set, then $QT_Ul CCOM (the
command line) is displayed.

QT_UlI CDECLFLAGS
Default value is". These flags are passed to uic when creating a header filefroma. ui file.

QT_UI CDECLPREFI X
Default valueis' ' . Prefix for uic generated header files.

Iy
=== SCONS 156

QT_UI CDECLSUFFI X
Default valueis' . h' . Suffix for uic generated header files.

Qr_Ul CI MPLFLAGS
Default valueis' ' . These flags are passed to uic when creating a C++ filefrom a. ui file.

Qr_Ul CI MPLPREFI X
Default valueis' ui c_

. Prefix for uic generated implementation files.

QT_Ul Cl MPLSUFFI X
Default value is'$CXXFI LESUFFI X'. Suffix for uic generated implementation files.

QT_Ul SUFFI X
Default valueis' . ui ' . Suffix of designer input files.

QDI R
The path to the Qt installation to build against. If not already set, gt tool triesto obtain thisfrom os. envi r on;

if not found there, it tries to make a guess.

RANLI B
The archive indexer.

RANL| BCOM
The command line used to index a static library archive.

RANLI BCOMBTR
The string displayed when a static library archive isindexed. If thisis not set, then $RANLI BCOM(the command
line) is displayed.

env = Environnment (RANLI BCOVSTR = " | ndexi ng $TARCGET")

RANLI BFLAGS
General options passed to the archive indexer.

RC
The resource compiler used to build a Microsoft Visual C++ resourcefile.

RCCOM
The command line used to build a Microsoft Visual C++ resource file.

RCCOVSTR
The string displayed when invoking the resource compiler to build a Microsoft Visual C++ resource file. If this
is not set, then $RCCOM (the command line) is displayed.

RCFLAGS
The flags passed to the resource compiler by the RES builder.

RCl NCFLAGS
An automatically-generated construction variable containing the command-line options for specifying directories
to be searched by the resource compiler. The value of $RCI NCFLAGS is created by respectively prepending and
appending $RCI NCPREFI X and $RCl NCSUFFI X to the beginning and end of each directory in $CPPPATH.

RClI NCPREFI X
The prefix (flag) used to specify an include directory on the resource compiler command line. This will be
prepended to the beginning of each directory in the $CPPPATH construction variable when the $RCI NCFLAGS
variableis expanded.

Iy
=== SCONS 157

RClI NCSUFFI X
The suffix used to specify an include directory on the resource compiler command line. Thiswill be appended to
the end of each directory in the $CPPPATH construction variable when the $RCI NCFLAGS variableis expanded.

RDi rs
A function that converts astring into alist of Dir instances by searching the repositories.

REGSVR
The program used on Windows systems to register a newly-built DLL library whenever the Shar edLi brary
builder is passed a keyword argument of r egi st er =Tr ue.

REGSVRCOM
The command line used on Windows systems to register a newly-built DLL library whenever the
Shar edLi br ar y builder is passed a keyword argument of r egi st er =Tr ue.

REGSVRCOVBTR
The string displayed when registering anewly-built DLL file. If thisis not set, then $REGSVRCOM(the command
line) is displayed.

REGSVRFLAGS
Flags passed to the DLL registration program on Windows systems when anewly-built DLL library isregistered.
By default, thisincludesthe/ s that prevents dialog boxes from popping up and requiring user attention.

RM C
The Java RMI stub compiler.

RM CCOM
The command line used to compile stub and skeleton class files from Java classes that contain RMI
implementations. Any options specified inthe $SRM CFLAGS construction variable areincluded on this command
line.

RM CCOVBTR
The string displayed when compiling stub and skeleton class files from Java classes that contain RMI
implementations. If thisis not set, then $RM CCOM (the command line) is displayed.

env = Environnment (RM CCOMSTR = "Generati ng stub/skel eton class files $TARGETS from $SCU

RM CFLAGS
General options passed to the Java RMI stub compiler.

RPATH
A list of paths to search for shared libraries when running programs. Currently only used in the GNU (gnulink),
IRIX (sgilink) and Sun (sunlink) linkers. Ignored on platforms and toolchains that don't support it. Note that the
paths added to RPATH are not transformed by scons in any way: if you want an absolute path, you must make
it absolute yourself.

_RPATH
An automatically-generated construction variable containing the rpath flags to be used when linking a program
with shared libraries. The vaue of $_RPATH is created by respectively prepending $RPATHPREFI X and
appending $SRPATHSUFFI X to the beginning and end of each directory in $RPATH.

RPATHPREFI X
The prefix used to specify a directory to be searched for shared libraries when running programs. This will be
prepended to the beginning of each directory in the $RPATH construction variable when the $_ RPATH variable
isautomatically generated.

Iy
=== SCONS 158

RPATHSUFFI X
The suffix used to specify a directory to be searched for shared libraries when running programs. This will be
appended to the end of each directory in the $RPATH construction variable when the $_RPATH variable is
automatically generated.

RPCGEN
The RPC protocol compiler.

RPCGENCLI ENTFLAGS
Options passed to the RPC protocol compiler when generating client side stubs. These are in addition to any flags
specified in the SRPCGENFLAGS construction variable.

RPCGENFLAGS
General options passed to the RPC protocol compiler.

RPCGENHEADERFLAGS
Options passed to the RPC protocol compiler when generating a header file. These are in addition to any flags
specified in the SRPCGENFLAGS construction variable.

RPCGENSERVI CEFLAGS
Options passed to the RPC protocol compiler when generating server side stubs. These arein addition to any flags
specified in the $RPCGENFLAGS construction variable.

RPCGENXDRFLAGS
Options passed to the RPC protocol compiler when generating XDR routines. These are in addition to any flags
specified in the SRPCGENFLAGS construction variable.

SCANNERS
A list of the available implicit dependency scanners. New file scanners may be added by appending to this list,
athough the more flexible approach is to associate scanners with a specific Builder. See the manpage sections
"Builder Objects’ and " Scanner Objects’ for more information.

SCONS_HOVE
The (optional) path to the SCons library directory, initialized from the external environment. If set, thisisused to
construct a shorter and more efficient search path in the $MSVSSCONS command line executed from Microsoft
Visua Studio project files.

SHCC
The C compiler used for generating shared-library objects. See also $CC for compiling to static objects.

SHCCCOM
The command line used to compile a C source file to a shared-library object file. Any options specified in the
$SHCFLAGS, $SHCCFLAGS and $CPPFLAGS construction variables are included on this command line. See
also $CCCOMfor compiling to static objects.

SHCCCOMSTR
If set, the string displayed when a C sourcefileis compiled to a shared object file. If not set, then $SHCCCOM(the
command line) is displayed. See also $CCCOMBTR for compiling to static objects.

env = Environnment (SHCCCOMSTR = " Conpi | i ng shared object $TARGET")
SHCCFLAGS

Options that are passed to the C and C++ compilers to generate shared-library objects. See also $CCFLAGS for
compiling to static objects.

Iy
=== SCONS 159

SHCFLAGS
Options that are passed to the C compiler (only; not C++) to generate shared-library objects. See also $CFLAGS
for compiling to static objects.

SHCXX
The C++ compiler used for generating shared-library objects. See also $CXX for compiling to static objects.

SHCXXCOM
The command line used to compile a C++ source file to a shared-library object file. Any options specified in the
$SHCXXFLAGS and $CPPFLAGS construction variables are included on this command line. See also $CXXCOM
for compiling to static objects.

SHCXXCOMVSTR
If set, the string displayed when a C++ source fileis compiled to a shared object file. If not set, then $SHCXXCOM
(the command line) is displayed. See also $CXXCOVSTR for compiling to static objects.

env = Environnment (SHCXXCOMSTR = " Conpi | i ng shared obj ect $TARCGET")

SHCXXFLAGS
Options that are passed to the C++ compiler to generate shared-library objects. See also $CXXFLAGS for
compiling to static objects.

SHDC
The name of the compiler to use when compiling D source destined to be in a shared objects. See also $DC for
compiling to static objects.

SHDCOM
The command line to use when compiling code to be part of shared objects. See also $DCOMfor compiling to
static objects.

SHDCOVSTR
If set, the string displayed when a D source file is compiled to a (shared) object file. If not set, then $SHDCOM
(the command line) is displayed. See also $DCOMSTR for compiling to static objects.

SHDLI BVERSI ONFLAGS
Extra flags added to $SHDLI NKCOMwhen building versioned Shar edLi br ary. These flags are only used
when $SHLI BVERSI ONis set.

SHDLI NK
The linker to use when creating shared objects for code bases include D sources. See also $DLI NK for linking
static objects.

SHDL I NKCOM
The command line to use when generating shared objects. See also $DLI NKCOMfor linking static objects.

SHDLI NKFLAGS
Thelist of flags to use when generating a shared object. See also $DLI NKFLAGS for linking static objects.

SHEL L
A string naming the shell program that will be passed to the $SPAWN function. See the $SPAWN construction
variable for more information.

SHELL_ENV_GENERATORS
Must be a list (or an iterable) containing functions where each function generates or alters the environment
dictionary which will be used when executing the $SPAWN function. The functions will initially be passed a
reference of the current execution environment (e.g. env['ENV']), and each called while iterating the list. Each

Iy
=== SCONS 160

function must return a dictionary which will then be passed to the next function iterated. The return dictionary
should contain keys which represent the environment variables and their respective values. This primary purpose
of this construction variable isto give the user the ahility to substitute execution environment variables based on
env, targets, and sources. If desired, the user can completely customize the execution environment for particular
targets.

def custom shell env(env, target, source, shell _env):
"""custom ze shell _env if desired"""
if str(target[0]) == 'special _target':
shel | _env[' SPECI AL_ VAR | = env. subst (' SOVE VAR , target=target, source=source)
return shell _env

env[" SHELL ENV_GENERATORS"] = [custom shell env]

env The SCons construction environment from which the execution environment can be derived from.
t ar get Thelist of targets associated with this action.
sour ce Thelist of sources associated with this action.

shel | _env The current shell_env after iterating other SHELL_ENV_GENERATORS functions. This can be
compared to the passed env['ENV'] to detect any changes.

SHF03
The Fortran 03 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. You only need to set $SHFO3 if
you need to use a specific compiler or compiler version for Fortran 03 files.

SHFO3COM
The command line used to compile a Fortran 03 source file to a shared-library object file. You only need to
set $SHFO3COMif you need to use a specific command line for Fortran 03 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHFO3COVBTR
If set, the string displayed when a Fortran 03 source file is compiled to a shared-library object file. If not set, then
$SHFO3COMor $SHFORTRANCOM (the command line) is displayed.

SHFO3FLAGS
Options that are passed to the Fortran 03 compiler to generated shared-library objects. You only need to set
$SHFO3FLAGS if you need to define specific user options for Fortran 03 files. You should normally set the
$FORTRANCOMMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF03PPCOM
The command line used to compile a Fortran 03 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO3FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF03PPCOMif you need to use a specific
C-preprocessor command line for Fortran 03 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHFO3PPCOVSTR
If set, the string displayed when aFortran 03 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF03PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

Iy
=== SCONS 161

SHF08
The Fortran 08 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF08 if
you need to use a specific compiler or compiler version for Fortran 08 files.

SHFO8COM
The command line used to compile a Fortran 08 source file to a shared-library object file. You only need to
set $SHFO8COMif you need to use a specific command line for Fortran 08 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHFO8COMSTR
If set, the string displayed when a Fortran 08 source file is compiled to a shared-library object file. If not set, then
$SHFO8COMor $SHFORTRANCOM(the command line) is displayed.

SHFO8FLAGS
Options that are passed to the Fortran 08 compiler to generated shared-library objects. You only need to set
$SHFOBFLAGS if you need to define specific user options for Fortran 08 files. You should normally set the
$FORTRANCOVMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHFO8PPCOM
The command line used to compile a Fortran 08 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHFO8FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHFO8PPCOMif you need to use a specific
C-preprocessor command line for Fortran 08 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHFO8PPCOVSTR
If set, the string displayed when aFortran 08 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF08PPCOMor $SHFORTRANPPCOM(the command line)
isdisplayed.

SHF77
The Fortran 77 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF77 if
you need to use a specific compiler or compiler version for Fortran 77 files.

SHF77COM
The command line used to compile a Fortran 77 source file to a shared-library object file. You only need to
set $SHF77COMif you need to use a specific command line for Fortran 77 files. Y ou should normally set the
$SHFORTRANCOMvariable, which specifies the default command line for all Fortran versions.

SHF77COVSTR
If set, the string displayed when a Fortran 77 source file is compiled to a shared-library object file. If not set, then
$SHF77COMor $SHFORTRANCOM(the command line) is displayed.

SHF77FLAGS
Options that are passed to the Fortran 77 compiler to generated shared-library objects. You only need to set
$SHF77FLAGS if you need to define specific user options for Fortran 77 files. You should normally set the
$FORTRANCOVMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for al Fortran versions.

SHF77PPCOM
The command line used to compile a Fortran 77 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF77FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF77PPCOMif you need to use a specific

Iy
=== SCONS 162

C-preprocessor command line for Fortran 77 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF77PPCOVSTR
If set, the string displayed when aFortran 77 sourcefileis compiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF77PPCOMor $SHFORTRANPPCOM(the command line)
is displayed.

SHF90
The Fortran 90 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF90 if
you need to use a specific compiler or compiler version for Fortran 90 files.

SHF90COM
The command line used to compile a Fortran 90 source file to a shared-library object file. You only need to
set $SHF90COMIf you need to use a specific command line for Fortran 90 files. Y ou should normally set the
$SHFORTRANCOMVvariable, which specifies the default command line for all Fortran versions.

SHF90COMBTR
If set, the string displayed when a Fortran 90 source file is compiled to a shared-library object file. If not set, then
$SHF90COMor $SHFORTRANCOM (the command line) is displayed.

SHF90FLAGS
Options that are passed to the Fortran 90 compiler to generated shared-library objects. You only need to set
$SHFIOFLAGS if you need to define specific user options for Fortran 90 files. You should normally set the
$FORTRANCOVMONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for al Fortran versions.

SHF90PPCOM
The command line used to compile a Fortran 90 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF90FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF90PPCOMif you need to use a specific
C-preprocessor command line for Fortran 90 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF90PPCOMSTR
If set, the string displayed when aFortran 90 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF90PPCOMor $SHFORTRANPPCOM(the command line)
is displayed.

SHF95
The Fortran 95 compiler used for generating shared-library objects. Y ou should normally set the $SHFORTRAN
variable, which specifies the default Fortran compiler for all Fortran versions. Y ou only need to set $SHF95 if
you need to use a specific compiler or compiler version for Fortran 95 files.

SHF95COM
The command line used to compile a Fortran 95 source file to a shared-library object file. You only need to
set $SHF95COMIf you need to use a specific command line for Fortran 95 files. Y ou should normally set the
$SHFORTRANCOMVvariable, which specifies the default command line for all Fortran versions.

SHF95COMBTR
If set, the string displayed when a Fortran 95 source file is compiled to a shared-library object file. If not set, then
$SHF95COMor $SHFORTRANCOM (the command line) is displayed.

SHFI5FLAGS
Options that are passed to the Fortran 95 compiler to generated shared-library objects. You only need to set
$SHFISFLAGS if you need to define specific user options for Fortran 95 files. You should normally set the

Iy
=== SCONS 163

$FORTRANCOVVONFLAGS variable, which specifies the user-specified options passed to the default Fortran
compiler for all Fortran versions.

SHF95PPCOM
The command line used to compile a Fortran 95 source file to a shared-library object file after first running the
file through the C preprocessor. Any options specified in the $SHF95FLAGS and $CPPFLAGS construction
variables are included on this command line. Y ou only need to set $SHF95PPCOMif you need to use a specific
C-preprocessor command line for Fortran 95 files. Y ou should normally set the $SHFORTRANPPCOMvariable,
which specifies the default C-preprocessor command line for all Fortran versions.

SHF95PPCOMSTR
If set, the string displayed when aFortran 95 sourcefileiscompiled to ashared-library object file after first running
thefile through the C preprocessor. If not set, then $SHF95PPCOMor $SHFORTRANPPCOM(the command line)
is displayed.

SHFORTRAN
The default Fortran compiler used for generating shared-library objects.

SHFORTRANCOM
The command line used to compile a Fortran source file to a shared-library object file. By default, any options
specified in the $SHFORTRANFLAGS, $_FORTRANMODFLAG, and $_FORTRANI NCFLAGS construction
variables are included on this command line. See also $FORTRANCOM

SHFORTRANCOVSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file. If not set, then
$SHFORTRANCOM (the command line) is displayed.

SHFORTRANFLAGS
Options that are passed to the Fortran compiler to generate shared-library objects.

SHFORTRANPPCOM
The command line used to compile a Fortran source file to a shared-library object file after first running the
file through the C preprocessor. By default, any options specified in the $SHFORTRANFLAGS, $CPPFLAGS,
$_CPPDEFFLAGS, $_FORTRANMODFLAG, and $_FORTRANI NCFLAGS construction variables are included
on this command line. See also $SHFORTRANCOM

SHFORTRANPPCOVSTR
If set, the string displayed when a Fortran source file is compiled to a shared-library object file after first running
the file through the C preprocessor. If not set, then $SHFORTRANPPCOM (the command line) is displayed.

SHLI BEM TTER
Contains the emitter specification for the Shar edLi br ary builder. The manpage section "Builder Objects"
contains general information on specifying emitters.

SHLI BNOVERSI ONSYMLI NKS
Instructsthe Shar edLi br ar y builder to not create symlinks for versioned shared libraries.

SHLI BPREFI X
The prefix used for shared library file names.

_SHLI BSONAMVE
A macro that automatically generates shared library's SONAME based on $TARGET, $SHLIBVERSION and
$SHLIBSUFFIX. Used by Shar edLi br ar y builder when the linker tool supports SONAME (e.g. gnul i nk).

SHLI BSUFFI X
The suffix used for shared library file names.

Iy
=== SCONS 164

SHLI BVERSI ON
When this construction variable is defined, a versioned shared library is created by the Shar edLi brary
builder. Thisactivatesthe$_SHLI BVERSI ONFLAGS and thus modifiesthe $SHLI NKCOMas required, addsthe
version number to the library name, and creates the symlinks that are needed. $SHL1 BVERSI ON versions should
exist as alpha-numeric, decimal-delimited values as defined by the regular expression "\w+[\.\w+]*". Example
$SHLI BVERSI ONvauesinclude'l’, '1.2.3", and '1.2.gitaad12c8b'.

_SHLI BVERSI ONFLAGS
This macro automatically introduces extra flags to $SHLI NKCOMwhen building versioned Shar edLi br ary
(that is when $SHLI BVERSI ON is set). _ SHLI BVERSI ONFLAGS usually adds $SHLI BVERSI ONFLAGS
and some extra dynamically generated options (such as - W, - soname=$_SHL| BSONAME. It is unused by
"plain" (unversioned) shared libraries.

SHLI BVERSI ONFLAGS
Extraflags added to $SHLI NKCOMwhen building versioned Shar edLi br ar y. Theseflags are only used when
$SHLI BVERSI ONis set.

SHLI NK
The linker for programs that use shared libraries. See also $L1 NK for linking static objects.

On POSIX systems (those using the | i nk tool), you should normally not change this value as it defaults to a
"smart" linker tool which selects acompiler driver matching the type of sourcefilesin use. So for example, if you
set $SHCXX to aspecific compiler name, and are compiling C++ sources, the smartlink function will automatically
select the same compiler for linking.

SHLI NKCOM
The command line used to link programs using shared libraries. See also $L1 NKCOMfor linking static objects.

SHLI NKCOVSTR
The string displayed when programs using shared libraries are linked. If thisis not set, then $SHLI NKCOM((the
command line) is displayed. See adso $LI NKCOVSTR for linking static objects.

env = Environnment (SHLI NKCOVBTR = "Li nki ng shared $TARGET")

SHLI NKFLAGS
General user options passed to the linker for programs using shared libraries. Note that this variable should not
contain - | (or similar) options for linking with the libraries listed in $LI BS, nor - L (or similar) include search
path options that scons generates automatically from $L1 BPATH. See $_ LI BFLAGS above, for the variable that
expandsto library-link options, and $_LI| BDI RFLAGS above, for the variable that expandsto library search path
options. See also $L1 NKFLAGS for linking static objects.

SHOBJPREFI X
The prefix used for shared object file names.

SHOBJ SUFFI X
The suffix used for shared object file names.

SONAMVE
Variable used to hard-code SONAME for versioned shared library/loadable module.
env. SharedLi brary('test', '"test.c', SHLIBVERSION="0.1.2', SONAME='Ili btest.so0.2")

The variableis used, for example, by gnul i nk linker tool.

Iy
=== SCONS 165

SQURCE
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOURCE_URL
The URL (web address) of the location from which the project was retrieved. Thisisused tofill inthe Sour ce:
field in the controlling information for Ipkg and RPM packages.

See the Package builder.

SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

SOVERSI ON
This will construct the SONAME using on the base library name (t est in the example below) and use specified
SOVERSI ONto create SONAME.

env. SharedLi brary('test’', 'test.c', SHLIBVERSION='0.1.2', SOVERSI ON='2')
The variableis used, for example, by gnul i nk linker tool.

In the example above SONAME would be |i btest.so.2 which would be a symlink and point to
libtest.so0.0.1.2

SPAWN
A command interpreter function that will be called to execute command line strings. The function must accept
five arguments:

def spawn(shell, escape, cnd, args, env):

shel I isastring naming the shell program to use, escape isafunction that can be called to escape shell special
characters in the command line, cnd is the path to the command to be executed, ar gs holds the arguments to
the command and env isadictionary of environment variables defining the execution environment in which the
command should be executed.

STATI C_AND_SHARED OBJECTS_ARE_THE_SAME
When this variable is true, static objects and shared objects are assumed to be the same; that is, SCons does not
check for linking static objects into a shared library.

SUBST_DI CT
The dictionary used by the Substfil e or Textfil e builders for substitution values. It can be anything
acceptableto thedi ct () constructor, so in addition to a dictionary, lists of tuples are also acceptable.

SUBSTFI LEPREFI X
The prefix used for Subst f i | e file names, an empty string by default.

SUBSTFI LESUFFI X
The suffix used for Subst f i | e file names, an empty string by default.

SUMVARY
A short summary of what the project is about. This is used to fill in the Sunmary: field in the controlling
information for Ipkg and RPM packages, and asthe Descr i pti on: fieldin MSI packages.

Seethe Package builder.

Iy
=== SCONS 166

SW G
The name of the SWIG compiler to use.

SW GCFI LESUFFI X
The suffix that will be used for intermediate C source files generated by SWIG. The default valueis' _wr ap
$CFI LESUFFI X' - that is, the concatenation of the string _wr ap and the current C suffix $CFlI LESUFFI X.
By default, thisvalueis used whenever the - ¢ ++ option isnot specified as part of the $SW GFLAGS construction
variable.

SW GCOM
The command line used to call SWIG.

SW GCOMBTR
The string displayed when calling SWIG. If thisis not set, then $SW GCOM(the command line) is displayed.

SW GCXXFI LESUFFI X
The suffix that will be used for intermediate C++ source files generated by SWIG. The default value is
" _wr ap$CXXFI LESUFFI X' - that is, the concatenation of the string _wr ap and the current C++ suffix
$CXXFI LESUFFI X. By default, this value is used whenever the - c++ option is specified as part of the
$SW GFLAGS construction variable.

SW GDI RECTORSUFFI X
The suffix that will be used for intermediate C++ header files generated by SWIG. These are only generated for
C++ code when the SWIG 'directors featureisturned on. The default valueis_wr ap. h.

SW GFLAGS
General options passed to SWIG. Thisiswhere you should set the target language (- pyt hon, - per| 5,-tcl
etc.) and whatever other options you want to specify to SWIG, such as the - c++ to generate C++ code instead
of C Code.

_SW G NCFLAGS
An automatically-generated construction variable containing the SWIG command-line options for specifying
directories to be searched for included files. The value of $_SW G NCFLAGS is created by respectively
prepending and appending $SW G NCPREFI X and $SW G NCSUFFI X to the beginning and end of each
directory in $SW GPATH.

SW @ NCPREFI X
The prefix used to specify an include directory on the SWIG command line. This will be prepended to the
beginning of each directory in the $SW GPATH construction variable when the $_SW G NCFLAGS variableis
automatically generated.

SW G NCSUFFI X
The suffix used to specify an include directory on the SWIG command line. This will be appended to the end of
each directory in the $SW GPATH construction variable whenthe $_ SW G NCFLAGS variable is automatically
generated.

SW GOUTDI R
Specifies the output directory in which SWIG should place generated language-specific files. This will be used
by SCons to identify the files that will be generated by the SWIG call, and trandated intotheswi g - out di r
option on the command line.

SW GPATH
The list of directories that SWIG will search for included files. SCons SWIG implicit dependency scanner will
search these directories for include files. The default value is an empty list.

Don't explicitly put include directory arguments in $SW GFLAGS the result will be non-portable and the
directorieswill not be searched by the dependency scanner. Note: directory namesin $SW GPATHwill belooked-

Iy
=== SCONS 167

up relative to the SConscript directory when they are used in a command. To force scons to look-up a directory
relative to the root of the source tree use a top-relative path (#):

env = Environment (SW GPATH=" #/ i ncl ude')

The directory look-up can also be forced using the Di r () function:

include = Dir('include')
env = Environment (SW GPATH=i ncl ude)

The directory list will be added to command lines through the automatically-generated $ SW G NCFLAGS
construction variable, which is constructed by respectively prepending and appending the values of the
$SW A NCPREFI X and $SW G NCSUFFI X construction variables to the beginning and end of each directory
in $SW GPATH. Any command lines you define that need the SWIGPATH directory list should include
$_SW d NCFLAGS:

env = Environnent (SW GCOVE"ny_swi g -0 $TARGET $_SW A NCFLAGS $SOURCES")

SW GVERSI ON
The detected version string of the SWIG toal.

TAR
Thetar archiver.

TARCOM
The command line used to call the tar archiver.

TARCOVSTR
The string displayed when archiving files using the tar archiver. If thisis not set, then $TARCOM (the command
line) is displayed.

env = Environnment (TARCOVSTR = "Archi vi ng $TARGET")

TARFLAGS
General options passed to the tar archiver.

TARCGET
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

TARGET_ARCH
The name of the hardware architecture that objects created using this construction environment should target. Can
be set when creating a construction environment by passing as a keyword argument in the Envi r onnment call.

On the wi n32 platform, if the Microsoft Visual C++ compiler is available, msvc tool setup is done using
$HOST_ARCH and $TARGET_ARCH. If avalueis not specified, will be set to the same value as $HOST _ARCH.
Changing the value after the environment isinitialized will not cause thetool to be reinitialized. Compiled objects
will bein the target architecture if the compilation system supports generating for that target. The latest compiler
which can fulfill the requirement will be selected, unless a different version is directed by the value of the
$MSVC_VERSI ON construction variable.

On the win32/msvc combination, valid target arch values are x86, ar m i 386 for 32-bit targets and and64,
arnb4, x86_64 and i a64 (Itanium) for 64-hit targets. For example, if you want to compile 64-bit binaries,

Iy
=== SCONS 168

you would set TARGET_ARCH=' x86_64" when creating the construction environment. Note that not all target
architectures are supported for al Visual Studio / MSVC versions. Check the relevant Microsoft documentation.

$TARCGET_ARCH s not currently used by other compilation tools, but the option is reserved to do so in future

TARCGET_CS
The name of the operating system that objects created using this construction environment should target. Can be
set when creating a construction environment by passing as a keyword argument in the Envi r onment call;.

$TARCGET_CSisnot currently used by SCons but the option is reserved to do so in future

TARCETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

TARSUFFI X
The suffix used for tar file names.

TEMPFI LE
A callable object used to handle overly long command line strings, since operations which call out to a shell
will fail if the line is longer than the shell can accept. This tends to particularly impact linking. The tempfile
object stores the command line in a temporary file in the appropriate format, and returns an alternate command
line so the invoked tool will make use of the contents of the temporary file. If you need to replace the default
tempfile object, the callable should take into account the settings of $MAXLI NELENGTH, $TEMPFI LEPREFI X,
$TEMPFI LESUFFI X, $TEMPFI LEARGIO N, $TEMPFI LEDI Rand $TEMPFI LEARGESCFUNC.

TEMPFI LEARGESCFUNC
Thedefault argument escapefunctionisSCons. Subst . quot e_spaces. If you need to apply extraoperations
on a command argument (to fix Windows slashes, normalize paths, etc.) before writing to the temporary file,
you can set the $STEMPFI LEARGESCFUNC variable to a custom function. Such a function takes a single string
argument and returns a new string with any modifications applied. Example:

i mport sys
i mport re
from SCons. Subst inport quote_spaces

W NPATHSEP_RE = re.conpile(r"\\([AM\""\\]|$)")

def tenpfile_arg esc _func(arg):
arg = quote_spaces(arQg)
if sys.platform!= "w n32":
return arg
GCC requi res doubl e Wndows sl ashes, let's use UN X separ at or
return WNPATHSEP_RE. sub(r"/\ 1", arg)

env[" TEMPFI LEARGESCFUNC'] = tenpfile_arg_esc_func

TEMPFI LEARGIO N
The string to use to join the arguments passed to $TEMPFI LE when the command line exceeds the limit set by
$MAXLI NELENGTH. The default value is a space. However for MSVC, MSLINK the default is a line separator
asdefined by 0s. | i nesep. Note thisvalueis used literally and not expanded by the subst logic.

TEMPFI LEDI R
The directory to create the long-lines temporary filein.

Iy
=== SCONS 169

TEMPFI LEPREFI X
The prefix for the name of the temporary file used to store command lines exceeding $MAXLI NELENGTH. The
default prefix is' @ , which works for the Microsoft and GNU toolchains on Windows. Set this appropriately for
other toolchains, for example' - @ for the diab compiler or' - vi a' for ARM toolchain.

TEMPFI LESUFFI X
The suffix for the name of the temporary file used to store command lines exceeding $MAXLI NELENGTH. The
suffix should include the dot (") if one is wanted as it will not be added automatically. The default is. | nk.

TEX
The TeX formatter and typesetter.

TEXCOM
The command line used to call the TeX formatter and typesetter.

TEXCOMSTR
The string displayed when calling the TeX formatter and typesetter. If thisisnot set, then $TEXCOM(the command
line) is displayed.

env = Environnent (TEXCOMSTR = "Bui |l di ng $TARGET from TeX i nput $SOURCES")

TEXFLAGS
General options passed to the TeX formatter and typesetter.

TEXI NPUTS
List of directories that the LaTeX program will search for include directories. The LaTeX implicit dependency
scanner will search these directories for \include and \import files.

TEXTFI LEPREFI X
The prefix used for Text f i | e file names, an empty string by default.

TEXTFI LESUFFI X
The suffix used for Text f i | e filenames; . t xt by default.

TOOLS
A list of the names of the Tool specifications that are part of this construction environment.

UNCHANGED _SOURCES
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

UNCHANGED TARCETS
A reserved variable name that may not be set or used in a construction environment. (See the manpage section
"Variable Substitution" for more information).

VENDOR
The person or organization who supply the packaged software. This is used to fill in the Vendor : field in the
controlling information for RPM packages, and the Manuf act ur er : field in the controlling information for
MSI packages.

See the Package builder.

VERSI ON
The version of the project, specified asa string.

Seethe Package builder.

Iy
=== SCONS 170

VSWHERE

Specify the location of vswher e. exe.

The vswher e. exe executable is distributed with Microsoft Visua Studio and Build Tools since the 2017
edition, but is also available standalone. It provides full information about installations of 2017 and later editions.
With the - | egacy argument, vswher e. exe can detect installations of the 2010 through 2015 editions with
limited data returned. If VSWHERE is set, SCons will use that location.

Otherwise SCons will look in the following locations and set VSWHERE to the path of the first vswher e. exe
located.

* 9rograntil es(x86) % M crosoft Visual Studio\lnstaller
e %rograntil es® M crosoft Visual Studio\lnstaller
* %Chocol ateylnstall % bin

Note that VSWHERE must be set at the same time or prior to any of msvc, msvs , and/or msl i nk Tool being
initialized. Either set it asfollows

env = Environment (VSWHERE=' c: / ny/ pat h/ t o/ vswhere')

or if your construction environment is created specifying an empty tools list (or alist of tools which omits all of
default, msvs, msvc, and mslink), and also before env. Tool iscalled to ininitialize any of those tools:

env = Environnment (tool s=[])

env[' VSWHERE'] = r'c:/ny/vswhere/install/l ocation/vswhere. exe'
env. Tool (' nsvc')

env. Tool (' nslink')

env. Tool (' nBvs')

W NDOWN5_EMBED_MANI FEST

Set to Tr ue to embed the compiler-generated manifest (normally ${ TARGET} . mani f est) into all Windows
executables and DLLs built with this environment, as a resource during their link step. This is done using $MT
and $MIEXECOMand $MT'SHLI BCOM See also $W NDOWS_| NSERT_MANI FEST.

W NDOAS_| NSERT_DEF

If set to true, alibrary build of aWindowsshared library (. dI | file) will include areference to the corresponding
module-definition file at the same time, if amodul e-definition fileis not already listed asabuild target. The name
of the module-definition file will be constructed from the base name of the library and the construction variables
$W NDOWSDEFSUFFI X and $W NDOWSDEFPREFI X. The default is to not add a module-definition file. The
module-definition file is not created by this directive, and must be supplied by the devel oper.

W NDOWS_| NSERT_MANI FEST

If set to true, scons will add the manifest file generated by Microsoft Visual C++ 8.0 and later to the target
list so SCons will be aware they were generated. In the case of an executable, the manifest file name is
constructed using $W NDOWSPROGVANI FESTSUFFI X and $W NDOWSPROGVANI FESTPREFI X. In the case
of a shared library, the manifest file name is constructed using $W NDOASSHLI BMANI FESTSUFFI X and
$W NDOWSSHLI BMANI FESTPREFI X. See also $W NDOAS_EMBED MANI FEST.

W NDOWSDEFPREFI X

The prefix used for a Windows linker module-definition file name. Defaults to empty.

W NDOWSDEFSUFFI X

The suffix used for a Windows linker module-definition file name. Defaultsto . def .

~

=!t=5CcoNS 171

W NDOWSEXPPREFI X
The prefix used for Windows linker exports file names. Defaults to empty.

W NDOWSEXPSUFFI X
The suffix used for Windows linker exports file names. Defaultsto . exp.

W NDOWEPROGVANI FESTPREFI X
The prefix used for executable program manifest files generated by Microsoft Visual C/C++. Defaults to empty.

W NDOWSPROGVANI FESTSUFFI X
The suffix used for executable program manifest files generated by Microsoft Visual C/C++. Defaults to
. mani f est .

W NDOWESHLI BMANI FESTPREFI X
The prefix used for shared library manifest files generated by Microsoft Visual C/C++. Defaults to empty.

W NDOASSHLI BMANI FESTSUFFI X
The suffix used for shared library manifest files generated by Microsoft Visual C/C++. Defaultsto . mani f est .

X_| PK_DEPENDS
Thisisused to fill inthe Depends: field in the controlling information for |pkg packages.

See the Package builder.

X_| PK_DESCRI PTI ON
Thisis used to fill in the Descri pti on: field in the controlling information for Ipkg packages. The default
valueis“$SUMVARY\N$DESCRI PTI ON’

X_I PK_MAI NTAI NER
Thisisused to fill inthe Mai nt ai ner : field in the controlling information for Ipkg packages.

X I PK_PRIORITY
Thisisusedtofill inthePri ori ty: fieldinthe controlling information for | pkg packages.

X_| PK_SECTI ON
Thisisusedto fill inthe Sect i on: field in the controlling information for |pkg packages.

X_MBl _LANGUAGE
Thisisusedto fill inthe Language: attribute in the controlling information for MSI packages.

See the Package builder.

X_MSI _LI CENSE_TEXT
Thetext of the softwarelicensein RTF format. Carriage return characterswill bereplaced with the RTF equivalent
\\par.

See the Package builder.

X_NMS| _UPGRADE_CODE
TODO

X_RPM_AUTOREQPROV
Thisisused tofill inthe Aut oReqgPr ov: fieldinthe RPM . spec file.

See the Package builder.

X RPM BUI LD
internal, but overridable

Iy
=== SCONS 172

X_RPM BUI LDREQUI RES
Thisisused to fill inthe Bui | dRequi r es: fieldinthe RPM . spec file. Note this should only be used on a
host managed by rpm as the dependencies will not be resolvable at build time otherwise.

X_RPM BUI LDROCT
internal, but overridable

X_RPM CLEAN
internal, but overridable

X_RPM CONFLI CTS
Thisisusedtofill intheConf | i ct s: fieldinthe RPM . spec file.

X_RPM DEFATTR
Thisvalueis used as the default attributes for the files in the RPM package. The default valueis*“ (-,root,root)”.

X _RPM DI STRI BUTI ON
Thisisusedtofill intheDi stri buti on: fieldinthe RPM . spec file.

X_RPM_EPCCH
Thisisusedto fill inthe Epoch: fieldinthe RPM . spec file.

X_RPM_EXCLUDEARCH
Thisisused to fill inthe Excl udeAr ch: fieldinthe RPM . spec file.

X_RPM_EXLUSI VEARCH
Thisisused to fill inthe Excl usi veAr ch: fieldinthe RPM . spec file.

X_RPM_EXTRADEFS
A list used to supply extra defintions or flags to be added to the RPM . spec file. Each item is added as-is
with a carriage return appended. Thisis useful if some specific RPM feature not otherwise anticipated by SCons
needs to be turned on or off. Noteif this variable is omitted, SCons will by default supply the value' %gl obal
debug_package % ni | }' todisabledebug package generation. To enable debug package generation, include
this variable set either to None, or to a custom list that does not include the default line. Added in version 3.1.

env. Package(
NAMVE="f 00",

X_RPM_EXTRADEFS=[
"0gdefi ne _unpackaged files term nate build 0"
"0gefine _mssing _doc files term nate build 0"
] 1
)

X_RPM_GROUP
Thisisusedto fill inthe G oup: fieldinthe RPM . spec file.

X_RPM_GROUP_I ang
Thisisused tofill inthe G- oup(| ang) : fieldinthe RPM . spec file. Notethat | ang isnot literal and should
be replaced by the appropriate language code.

X_RPM_ | CON
Thisisusedtofill inthel con: fieldinthe RPM . spec file.

X _RPM | NSTALL
internal, but overridable

Iy
=== SCONS 173

X_RPM PACKACGER
Thisisused to fill inthe Packager : fieldinthe RPM . spec file.

X_RPM POSTI NSTALL
Thisisused to fill inthe %post : sectioninthe RPM . spec file.

X_RPM_POSTUNI NSTALL
Thisisused tofill inthe %post un: sectioninthe RPM . spec file.

X _RPM PREFI X
Thisisusedtofill inthe Pr ef i x: fieldinthe RPM . spec file.

X_RPM_PREI NSTALL
Thisisused tofill inthe %pr e: sectioninthe RPM . spec file.

X RPM PREP
internal, but overridable

X_RPM _PREUNI NSTALL
Thisisused tofill inthe %pr eun: sectioninthe RPM . spec file.

X_RPM_PROVI DES
Thisisusedto fill inthe Pr ovi des: fieldinthe RPM . spec file.

X_RPM REQUI RES
Thisisused tofill inthe Requi r es: fieldinthe RPM . spec file

X RPM SERI AL
Thisisusedtofill inthe Seri al : fieldinthe RPM . spec file.

X_RPM_URL
Thisisusedtofill intheUr | ; fieldinthe RPM . spec file.

XCGETTEXT
Path to xgettext(1) program (found viaDet ect ()). Seexget t ext tool and POTUpdat e builder.

XGETTEXTCOM
Complete xgettext command line. See xget t ext tool and POTUpdat e builder.

XCGETTEXTCOVSTR
A dtring that is shown when xgettext(1) command is invoked (default:
$XCETTEXTCOM'). Seexget t ext tool and POTUpdat e builder.

, which means "print

_XGETTEXTDOVAI N
Internal "macro”. Generates xgettext domain name form source and target (default:
" ${ TARGET. fi | ebase}").

XGETTEXTFLAGS
Additional flags to xgettext(1). Seexget t ext tool and POTUpdat e builder.

XGETTEXTFROM
Name of file containing list of xgettext(1)'s source files. Autotools' users know this as POTFI LES. i n so they
will inmost cases set XGETTEXTFROME" POTFI LES. i n" here. The $XGET TEXTFROMfiles have same syntax
and semantics as the well known GNU POTFI LES. i n. Seexget t ext tool and POTUpdat e builder.

_ XGETTEXTFROMFLAGS
Internal "macro”. Genrateslist of - D<di r > flags from the $XGETTEXTPATH list.

Iy
=== SCONS 174

XCGETTEXTFROVPREFI X
Thisflag is used to add single $XGETTEXTFROMfile to xgettext(1)'s commandline (default: * - f ').

XGETTEXTFROVBUFFI X
(default: " *)

XCGETTEXTPATH
List of directories, there xgettext(1) will look for source files (default: []).

Note

This variable works only together with $XGETTEXTFROM
Seealso xget t ext tool and POTUpdat e builder.

_XGETTEXTPATHFLAGS
Internal "macro”. Generates list of - f <f i | e> flags from $XGETTEXTFROM

XCGETTEXTPATHPREFI X
Thisflag is used to add single search path to xgettext(1)'s commandline (default; ' - D').

XGETTEXTPATHSUFFI X
(default: ' *)

YACC
The parser generator.

YACC_GRAPH_FI LE
If supplied, write a graph of the automaton to afile with the name taken from this variable. Will be emitted as a
- - gr aph= command-line option. Use thisin preference to including - - gr aph=in $YACCFLAGS directly.

YACC_HEADER FI LE
If supplied, generate a header file with the name taken from this variable. Will be emitted as a - - header =
command-line option. Use thisin preference to including - - header = in $YACCFLAGS directly.

YACCCOM
The command line used to call the parser generator to generate a sourcefile.

YACCCOMSTR
The string displayed when generating a source file using the parser generator. If thisis not set, then $YACCCOM
(the command line) is displayed.

env = Environnent (YACCCOMSTR="Yacc' i ng $TARGET from $SOURCES")

YACCFLAGS
General options passed to the parser generator. In addition to passing the value on during invocation, the yacc
tool also examines this construction variable for options which cause additional output files to be generated, and
adds those to the target list.

If a-d option is present, scons assumes that the call will also create a header file with the suffix defined
by $YACCHFI LESUFFI X if the yacc source file ends in a . y suffix, or a file with the suffix defined by
$YACCHXXFI LESUFFI X if theyacc sourcefileendsina. yy suffix.

If a- g option is present, scons assumes that the call will also create a graph file with the suffix defined by
$YACCVCGFI LESUFFI X.

If a- v optionispresent, sconsassumesthat the call will also create an output debug filewith the suffix . out put .

Iy
=== SCONS 175

Also recognized are GNU hison options - - header = and its deprecated synonym - - def i nes=, which is
similar to - d but the output filename is named by the option argument; and - - gr aph=, whichissimilarto - g
but the output filename is named by the option argument.

Note that files specified by - - header = and - - gr aph= may not be properly handled by SConsin al situations.
Consider using $YACC_HEADER_FI LE and $YACC_GRAPH_FI LE instead.

YACCHFI LESUFFI X
The suffix of the C header file generated by the parser generator when the - d option is used. Note that setting this
variable does not cause the parser generator to generate a header file with the specified suffix, it exists to allow
you to specify what suffix the parser generator will use of its own accord. The default valueis. h.

YACCHXXFI LESUFFI X
The suffix of the C++ header file generated by the parser generator when the - d option is used. Note that setting
this variable does not cause the parser generator to generate a header file with the specified suffix, it exists to
allow you to specify what suffix the parser generator will use of itsown accord. The default valueis. hpp, except
on Mac OS X, where the default is ${ TARGET. suf fi x} . h. because the default bison parser generator just
appends. h to the name of the generated C++ file.

YACCVCGFI LESUFFI X
The suffix of the file containing the VCG grammar automaton definition when the - - gr aph= option is used.
Note that setting this variable does not cause the parser generator to generate aV CG file with the specified suffix,
it exists to alow you to specify what suffix the parser generator will use of its own accord. The default value
is. vcg.

ZIP
The zip compression and file packaging utility.

ZI P_OVERRI DE_TI MESTAMP
An optional timestamp which overrides the last modification time of the file when stored inside the Zip archive.
Thisis atuple of six values: Year (>= 1980) Month (one-based) Day of month (one-based) Hours (zero-based)
Minutes (zero-based) Seconds (zero-based)

ZI PCOM
The command line used to call the zip utility, or the internal Python function used to create a zip archive.

Z1 PCOMPRESSI ON
The conpr essi on flag from the Python zi pfi | e module used by the internal Python function to control
whether the zip archive is compressed or not. The default valueiszi pfi | e. ZI P_DEFLATED, which createsa
compressed zip archive. Thisvalue has no effect if the zi pfi | e moduleis unavailable.

ZI PCOVSTR
The string displayed when archiving files using the zip utility. If thisis not set, then $ZI PCOM (the command
line or internal Python function) is displayed.

env = Environnent (ZI PCOVSTR = "Zi ppi ng $TARGET")

ZI PFLAGS
General options passed to the zip utility.

Z| PROOT
An optional zip root directory (default empty). The filenames stored in the zip filewill berelativeto thisdirectory,
if given. Otherwise the filenames are relative to the current directory of the command. For instance:

Iy
=== SCONS 176

env = Environment ()
env. Zi p(' foo.zip', 'subdirl/subdir2/filel", ZlI PROOT='subdirl")

will produce a zip file f 00. zi p containing a file with the name subdi r 2/ fi | el rather than subdi r 1/
subdir2/filel.

ZI PSUFFI X
The suffix used for zip file names.

Configure Contexts

SCons supports a configure context, an integrated mechanism similar to the various AC_CHECK macros in GNU
Autoconf for testing the existence of external items needed for the build, such as C header files, libraries, etc. The
mechanism is portable across platforms.

scons does not maintain an explicit cache of the tested values (this is different than Autoconf), but uses its normal
dependency tracking to keep the checked values up to date. However, users may override this behaviour with the - -
conf i g command line option.

Configure(env, [customtests, conf _dir, log file, config_h, clean, help])

env.Configure([customtests, conf _dir, log file, config_h, clean, help])
Create a configure context, which tracks information discovered while running tests. The context includes alocal
construction environment (available as cont ext .env) which is used when running the tests and which can be
updated with the check results. Only one context may be active at atime (since 4.0, scons will raise an exception
on an attempt to create a new context when there is an active context), but a new context can be created after the
activeoneiscompleted. For the global function form, therequired env describestheinitial valuesfor the context's
local construction environment; for the construction environment method form the instance provides the values.

cust om t est s specifies a dictionary containing custom tests (see the section on custom tests below). The
default value is None, meaning no custom tests are added to the configure context.

conf _di r specifies a directory where the test cases are built. This directory is not used for building normal
targets. The default valueis“#/ . sconf _t enp”.

| og_fi | e specifiesafile which collects the output from commands that are executed to check for the existence
of header files, libraries, etc. Thedefaultis“#/ confi g. | og”. If youareusingtheVar i ant Di r function, you
may want to specify a subdirectory under your variant directory.

conf i g_h specifiesaC header file where the results of testswill be written. The resultswill consist of lineslike
#defi ne HAVE _STDI O H, #defi ne HAVE_LI BM etc. Customarily, the name chosen is“confi g. h”.
The default is to not write a confi g_h file. You can specify the same confi g_h file in multiple calls to
Conf i gur e, in which case SCons will concatenate all results in the specified file. Note that SCons uses its
normal dependency checking to decide if it's necessary to rebuild the specified conf i g_h file. This means that
the file is not necessarily re-built each time sconsis run, but is only rebuilt if its contents will have changed and
some target that depends on theconf i g_h fileisbeing built.

The cl ean and hel p arguments can be used to suppress execution of the configuration tests when the - ¢/- -

cl ean or - H- h/- - hel p options are used, respectively. The default behavior is always to execute configure
context tests, sincetheresults of the tests may affect thelist of targetsto be cleaned or the help text. If the configure
tests do not affect these, then you may add the cl ean=Fal se or hel p=Fal se arguments (or both) to avoid
unnecessary test execution.

cont ext .Fi ni sh()
This method must be called after configuration is done. Though required, this is not enforced except if
Conf i gur e iscalled again while there is still an active context, in which case an exception israised. Fi ni sh
returns the environment as modified during the course of running the configuration checks. After this method

Iy
=== SCONS 177

is called, no further checks can be performed with this configuration context. However, you can create a new
configure context to perform additional checks.

Example of atypical Configure usage:

env = Environnent ()
conf = Configure(env)
i f not conf.CheckCHeader ("nmath. h"):
print("We really need math. h!'")
Exit(1)
i f conf.CheckLi bWt hHeader ("qt", "qgapp.h", "c++", "QApplication gapp(0,0);"):
do stuff for qt - usage, e.g.
conf . env. Append(CPPDEFI NES="W TH_QT")
env = conf. Fini sh()

A configure context has the following predefined methods which can be used to perform checks. Where| anguage
isarequired or optional parameter, the choice can currently be C or C++. The spellings accepted for Care“C” or “c”;
for C++ thevalue can be “CXX”, “cxx”, “C++” or “c++".

cont ext .CheckHeader (header, [include_quotes, |anguage])
Checksif header isusable in the specified language. header may be alist, in which case the last item in the
list is the header file to be checked, and the previous list items are header files whose #i ncl ude lines should
precede the header line being checked for. The optional argument i ncl ude_quot es must be a two character
string, where the first character denotes the opening quote and the second character denotes the closing quote. By
default, both characters are ™ (double quote). The optional argument | anguage should be either C or C++ and
selects the compiler to be used for the check. Returns a boolean indicating success or failure.

cont ext .CheckCHeader (header, [include_quotes])
Checks if header is usable when compiling a C language program. header may be alist, in which case the
last item in thelist is the header file to be checked, and the previouslist items are header fileswhose #i ncl ude
lines should precede the header line being checked for. The optiona argument i ncl ude_quot es must be a
two character string, where the first character denotes the opening quote and the second character denotes the
closing quote. By default, both characters are " (double quote). Note this is a wrapper around CheckHeader .
Returns a boolean indicating success or failure.

cont ext .CheckCXXHeader (header, [i nclude_quotes])
Checksif header isusable when compiling a C++ language program. header may be alist, in which case the
lastitem in thelist isthe header file to be checked, and the previous list items are header fileswhose #i ncl ude
lines should precede the header line being checked for. The optional argument i ncl ude_quot es must be a
two character string, where the first character denotes the opening quote and the second character denotes the
closing quote. By default, both characters are " (double quote). Note this is a wrapper around CheckHeader .
Returns a boolean indicating success or failure.

cont ext .CheckFunc(f uncti on_nane, [header, |anguage])
Checks if the specified C or C++ library function is available based on the context's local environment settings
(that is, using the values of $CFLAGS, $CPPFLAGS, $LI BS or other relevant construction variables).

funct i on_nane isthe name of the function to check for. The optional header argument is a string that will
be placed at the top of the test file that will be compiled to check if the function exists; the default is:

#i fdef _ cpl uspl us
extern "C'

#endi f

char function_name();

Iy
=== SCONS 178

Returns an empty string on success, a string containing an error message on failure.

cont ext .CheckLi b([li brary, synbol, header, |anguage, autoadd=True])
Checksif I i brary providessynbol . If aut oadd istrue (the default) and the library provides the specified
synbol , appends the library to the LI BS construction variable | i br ar y may aso be None (the default), in
which case synbol is checked with the current LI BS variable, or alist of library names, in which case each
library in the list will be checked for synbol . If synbol isnot set or isNone, then CheckLi b just checksif
you can link against the specified | i br ar y. Note though it is legal syntax, it would not be very useful to call
thismethod with | i br ary and synbol both omitted or None. Returns a boolean indicating success or failure.

cont ext .CheckLi bWt hHeader (I i brary, header, |anguage, [call, autoadd=True])

Provides a more sophisticated way to check against libraries then the CheckLi b call. | i br ary specifies the
library or alist of libraries to check. header specifies a header to check for. header may be alist, in which
case the last item in the list is the header file to be checked, and the previous list items are header files whose
#i ncl ude lines should precede the header line being checked for. cal I can be any valid expression (with
atrailing ;). If cal | is not set, the default simply checks that you can link against the specified | i brary.
aut oadd (default true) specifies whether to add the library to the environment if the check succeeds. Returns
aboolean indicating success or failure.

cont ext .CheckType(t ype_name, [includes, |anguage])
Checks for the existence of atype defined by t ypedef .t ype_nane specifies the typedef name to check for.
i ncl udes isastring containing one or more #i ncl ude lines that will be inserted into the program that will
be run to test for the existence of the type. Example:

sconf. CheckType(' foo_type', '#include "nmy types.h"', 'C++')
Returns an empty string on success, a string containing an error message on failure.

cont ext .CheckTypeSi ze(t ype_nane, [header, |anguage, expect])
Checks for the size of atype defined by t ypedef . t ype_nane specifies the typedef name to check for. The
optional header argument is a string that will be placed at the top of the test file that will be compiled to
check if the type exists; the default is empty. If the optional expect , is supplied, it should be an integer size;
CheckTypeSi ze will fail unlesst ype_nane isactualy that size. Returnsthe size in bytes, or zero if the type
was not found (or if the size did not match expect).

For example,

CheckTypeSi ze(' short', expect=2)
will return the size 2 only if short is actually two bytes.

cont ext .CheckCC()
Checks whether the C compiler (as defined by the $CC construction variable) works, by trying to compile asmall
source file. This provides a more rigorous check: by default, SCons itself only detects if there is a program with
the correct name, not if it is afunctioning compiler. Returns a boolean indicating success or failure.

The test program will be built with the same command line as the one used by the Cbj ect builder for C source
files, so by setting relevant construction variables it can be used to detect if particular compiler flags will be
accepted or rejected by the compiler.

cont ext .CheckCXX()
Checks whether the C++ compiler (as defined by the $CXX construction variable) works, by trying to compile a
small sourcefile. This provides amore rigorous check: by default, SConsitself only detectsif thereisa program
with the correct name, not if it is a functioning compiler. Returns a boolean indicating success or failure.

Iy
=== SCONS 179

The test program will be built with the same command line as the one used by the Cbj ect builder for C++
source files, so by setting relevant construction variables it can be used to detect if particular compiler flags will
be accepted or rejected by the compiler.

cont ext .Check SHCC()

Checks whether the shared-object C compiler (as defined by the $SHCC construction variable) works by trying to
compileasmall sourcefile. This provides amore rigorous check: by default, SConsitself only detectsif thereisa
program with the correct name, not if it is afunctioning compiler. Returns a bool ean indicating success or failure.

Thetest program will be built with the same command line as the one used by the Shar edCbj ect builder for C
source files, so by setting relevant construction variables it can be used to detect if particular compiler flags will
be accepted or rejected by the compiler. Note this does not check whether a shared library/dll can be created.

cont ext .Check SHCXX()

con

con

con

con

Checks whether the shared-object C++ compiler (as defined by the $SHCXX construction variable) works by
trying to compile asmall sourcefile. This provides a morerigorous check: by default, SConsitself only detectsif
there is a program with the correct name, not if it is afunctioning compiler. Returns a boolean indicating success
or failure.

The test program will be built with the same command line as the one used by the Shar edCbj ect builder for
C++ sourcefiles, so by setting relevant construction variables it can be used to detect if particular compiler flags
will be accepted or rejected by the compiler. Note this does not check whether ashared library/dll can be created.

t ext .CheckPr og(pr og_nane)
Checksif pr og_nane existsin the path SCons will use at build time. (cont ext .env[' ENV'] [' PATH 1).
Returns a string containing the path to the program, or None on failure.

t ext .CheckDecl ar ati on(synbol, [includes, |anguage])

Checks if the specified synbol isdeclared. i ncl udes is a string containing one or more #i ncl ude lines
that will be inserted into the program that will be run to test for the existence of the symbol. Returns a boolean
indicating success or falure.

t ext .CheckMenber (aggr egat e_nenber, [header, |anguage])

Checks for the existence of a member of the C/C++ struct or class. aggr egat e_nenber specifies the struct/
class and member to check for. header isastring containing one or more#i ncl ude linesthat will be inserted
into the program that will be run to test for the existence of the member. Example:

sconf. CheckMenber (' struct tmtmsec', '#include <tine.h>")

Returns a boolean indicating success or failure.

t ext .Def i ne(synbol, [value, coment])

This method does not check for anything, but rather forces the definition of a preprocessor macro that will be
added to the configuration header file. nane isthe macro'sidentifier. If val ue isgiven, it will be be used as the
macro replacement value. If val ue isastring and needs to display with quotes, the quotes need to be included,
asin'"string"' If theoptiona coment isgiven, it isinserted as a comment above the macro definition
(suitable comment marks will be added automatically). Thisis analogous to using AC_DEFI NE in Autoconf.

Examples:

env = Environment ()
conf = Configure(env)

~

'—‘—' SCONS 180

Puts the following line in the config header file:
#defi ne A SYMBOL
conf . Defi ne("A_SYMBOL")

Puts the following line in the config header file:
#define A SYMBOL 1
conf . Defi ne("A _SYmMBOL", 1)

Examples of quoting string values:

env = Environnent ()
conf = Configure(env)

Puts the following line in the config header file:
#defi ne A SYMBOL YA
conf. Define("A _SYMBOL", "YA")

Puts the following line in the config header file:
#defi ne A SYMBOL " YA"
conf. Define("A _SYMBOL", '"YA"')

Example including comment:

env = Environment ()
conf = Confi gure(env)

Puts the following lines in the config header file:

/[* Set to 1 if you have a synbol */

#defi ne A SYMBOL 1

conf. Define("A SYMBOL", 1, "Set to 1 if you have a synbol")

You can define your own custom checks in addition to using the predefined checks. To enable custom checks, pass
adictionary to the Conf i gur e function asthe cust om t est s parameter. The dictionary maps the names of the
checks to the custom check callables (either a Python function or an instance of a classimplementinga__cal | __
method). Each custom check will be called with a a CheckCont ext instance as the first parameter followed by
the remaining arguments, which must be supplied by the user of the check. A CheckCont ext isnot the same as a
configure context; rather it isan instance of aclasswhich containsaconfigure context (availableaschk_ct x.sconf).
A CheckCont ext provides the following methods which custom checks can make use of ::

chk_ct x.Message(t ext)
Displayst ext as an indicator of progess. For example: Checking for library X ...Usudly caled
before the check is started.

chk_ct x.Resul t (res)
Displays aresult message as an indicator of progress. If r es isan integer, displaysyes if r es evaluates true or
no if false. If r es isastring, it is displayed as-is. Usually called after the check has completed.

chk_ct x.TryConpi | e(t ext, extension="")
Checksif afile containingt ext and given the specified ext ensi on (e.g.' . ¢') can be compiled to an object
file using the environment's Cbj ect builder. Returns a boolean indicating success or failure.

chk_ct x.TryLi nk(t ext, extension="")
Checks if a file containing t ext and given the specified ext ensi on (e.g. ' . ¢') can be compiled to an
executable program using the environment's Pr ogr ambuilder. Returns a boolean indicating success or failure.

Iy
=== SCONS 181

chk_ct x.TryRun(t ext, extension="")
Checksif afilecontainingt ext and giventhespecifiedext ensi on(e.g.' . ¢') canbecompiledto an excutable
program using the environment's Pr ogr ambuilder and subsequently executed. Executionisonly attempted if the
build succeeds. If the program executes successfully (that is, itsreturn statusis0), atuple(Tr ue, out put Str)
isreturned, where out put St r isthe standard output of the program. If the program fails execution (its return
statusis non-zero), then (Fal se, '') isreturned.

chk_ctx.TryAction(action, [text, extension="'])
Checksif the specified act i on with an optional sourcefile (contentst ext , given extension ext ensi on) can
be executed. act i on may be anything which can be converted to an Action Object. On success, atuple (Tr ue,
out put St r) isreturned, where out put St r is the content of the target file. On failure (Fal se, '') is
returned.

chk_ct x.TryBui I d(bui | der, [text, extension="'])
Low level implementation for testing specific builds; the methods above are based on this method. Given the
Builder instance bui | der and the optional t ext of asourcefile with optional ext ensi on, returns aboolean
indicating success or failure. In addition, chk_ct x.| ast Tar get isset to the build target node if the build was
successful.

Example of implementing and using custom tests:

def CheckQ (chk_ctx, qtdir):
chk_ct x. Message(' Checking for gt ...")
| ast LI BS = chk_ctx. env['LIBS]
| ast LI BPATH = chk_ct x. env[' LI BPATH]
| ast CPPPATH = chk_ct x. env[' CPPPATH]
chk_ct x. env. Append(LIBS="qt', LIBPATH=qtdir + '/lib', CPPPATH=qtdir + '/include')
ret = chk_ctx. TryLi nk(
R
#i ncl ude <qgapp. h>
int main(int argc, char **argv) {
QAppl i cati on gapp(argc, argv);
return O;

}

)

if not ret:

chkct x. env. Repl ace(LI BS=I ast LI BS, LI BPATH=I ast LI BPATH, CPPPATH=I ast CPPPATH)
chkct x. Resul t (ret)
return ret

env = Environment ()
conf = Configure(env, customtests={"'Check@Q': CheckQ})
if not conf.CheckQ ('/usr/lib/qt'):
print('W really need qt!"')
Exit (1)
env = conf. Fini sh()

Command-Line Construction Variables

Often when building software, some variables need to be specified at build time. For example, libraries needed for
the build may be in non-standard locations, or site-specific compiler options may need to be passed to the compiler.
SConsprovidesaVar i abl es object to support overriding construction variables with values obtained from various
sources, often from the command line;

Iy
=== SCONS 182

scons VARI ABLE=f oo
The variable values can also be specified in a configuration file or an SConscript file.
To obtain the object for manipulating values, call the Var i abl es function:

Variables([files, [args]])
Iffilesisafileor list of files, they are executed as Python scripts, and the values of (global) Python variables
set in those files are added as construction variables in the Default Environment. If no files are specified, or the
fil es argument is None, then no files will be read (supplying None is necessary if there are no files but you
want to specify ar gs asapositional argument).

The following example file contents could be used to set an alternative C compiler:

CC = 'ny_cc'

If ar gs isspecified, it isadictionary of valuesthat will override anything read fromf i | es. The primary useis
to pass the ARGUMENTS dictionary that holds variables specified on the command line, allowing you to indicate
that if a setting appears on both the command line and in the file(s), the command line setting takes precedence.
However, any dictionary can be passed. Examples:

vars = Vari abl es(' custom py')
vars = Variabl es(' overrides. py', ARGUVENTS)
vars = Vari abl es(None, {FOQ 'expansion', BAR 7})

Calling Var i abl es with no argumentsis equivalent to:

vars = Variabl es(fil es=None, ar gs=ARGUMENTS)

Note that since the variables are eventually added as construction variables, you should choose variable names
which do not unintentionally change pre-defined construction variables that your project will make use of (see
the section called “ Construction Variables”).

Variables objects have the following methods:

var s.Add(key, [help, default, validator, converter])
Add a customizable construction variable to the Variables object. key is either the name of the variable, or a
tuple (or list), in which case the first item in the tuple is taken as the variable name, and any remaining values are
considered aliases for the variable. hel p isthe help text for the variable (default empty string). def aul t isthe
default value of the variable (default None). If def aul t isNone and avalue is not specified, the construction
variable will not be added to the construction environment.

Asaspecial casg, if key isatuple (or list) and isthe only argument, the tupleis unpacked into the five parameters
listed aboveleft to right, with any missing membersfilled with the respecitive default values. Thisformallows Add
to consume atuple emitted by the conveniencefunctionsBool Var i abl e,EnunVari abl e,Li st Vari abl e,
PackageVari abl e and Pat hVari abl e.

If theoptional val i dat or issupplied, it iscalled to validate the value of the variable. A function supplied asa
validator must accept three arguments: key, val ue and env, and should raise an exception with a helpful error
message if val ue isinvalid. No return value is expected from the validator.

If the optional convert er issupplied, it is caled to convert the value before putting it in the environment,
and should take either a value or a value and environment as parameters. The converter function must return a

Iy
=== SCONS 183

value, which will be converted into a string and be passed to the val i dat or (if any) and then added to the
construction environment.

Examples:

vars. Add(' CC , hel p='The C conpiler')

def valid col or(key, val, env):
if not val in['red , 'blue', '"yellow]:
rai se Exception("lnvalid color value '%'" %val)

vars. Add(' COLOR , validator=valid color)

var s.AddVar i abl es(ar gs)
A convenience method that adds one or more customizable construction variables to a Variables object in one
call; equivalent to calling Add multiple times. The ar gs are tuples (or lists) that contain the arguments for an
individual call to the Add method. Since tuples are not Python mappings, the arguments cannot use the keyword
form, but rather are positional arguments as documented for Add: a required name, the other four optional, but
must be in the specified order if used.

opt . AddVar i abl es(

("debug", "", 0),

("cc', "The C conpiler"),

("VALI DATE", "An option for testing validation", "notset", validator, None),
)

var s.Updat e(env, [args])
Update a construction environment env with the customized construction variables. Any specified variables that
are not configured for the Variables object will be saved and may be retrieved using the UnknownVar i abl es
method.

Normally this method is not called directly, but rather invoked indirectly by passing the Variables object to the
Envi r onnent function:

env = Environment (vari abl es=vars)

var s.UnknownVar i abl es()
Returns a dictionary containing any variables that were specified either in the files or the dictionary with which
the Variables object was initialized, but for which the Variables object was not configured.

env = Environnent (vari abl es=vars)
for key, value in vars. UnknownVari abl es():
print("unknown variable: %=%" % (key, value))

vars.Save(fil enane, env)
Save the currently set variablesinto ascript filenamed by f i | enane. Only variables that are set to non-default
valuesaresaved. Y ou can | oad these saved settingson asubsequent run by passingf i | enane totheVar i abl es
function, providing away to cache particular settings for reuse.

env = Environment ()
vars = Variabl es(['vari abl es. cache', 'custompy'])
vars. Add(...)

Iy
=== SCONS 184

vars. Updat e(env)
vars. Save(' vari abl es. cache', env)

var s.Gener at eHel pText (env, [sort])
Generate help text documenting the customizable construction variables, suitable for passing in to the Hel p
function. env is the construction environment that will be used to get the actual values of the customizable
variables. If the (optional) value of sor t iscallable, it isused as a comparison function to determine how to sort
the added variables. This function must accept two arguments, compare them, and return a negative integer if the
first is less-than the second, zero for equality, or a positive integer for greater-than. Optionally a Boolean value
of True for sort will cause a standard a phabetical sort to be performed.

Hel p(vars. Gener at eHel pText (env))

def cmp(a, b):
return (a > b) - (a < b)

Hel p(vars. Gener at eHel pText (env, sort=cnp))

var s.For mat Var i abl eHel pText (env, opt, help, default, actual)
Returns a formatted string containing the printable help text for one option. It is normally not called directly, but
iscaled by the Gener at eHel pText method to create the returned help text. It may be overridden with your
own function that takes the arguments specified above and returns a string of help text formatted to your liking.
Note that Gener at eHel pText will not put any blank lines or extra characters in between the entries, so you
must add those characters to the returned string if you want the entries separated.

def ny_format (env, opt, help, default, actual):
fm = "\n%: default=% actual =% (%)\n"
return fnt % (opt, default, actual, help)

vars. For mat Var i abl eHel pText = my_f or mat

To make it more convenient to work with customizable Variables, scons provides a number of functions that make it
easy to set up varioustypes of Variables. Each of thesereturn atupleready to be passedtothe Add or AddVar i abl es
method:

Bool Vari abl e(key, hel p, default)
Returns a tuple of arguments to set up a Boolean option. The option will use the specified name key, have a
default value of def aul t , and hel p will form the descriptive part of the help text. The option will interpret the
valuesy,yes,t,true,1,onandal | astrue andthevaluesn, no,f,fal se,0,of f andnone asfase.

EnunVvari abl e(key, hel p, default, allowed values, [map, ignorecase])

Returns a tuple of arguments to set up an option whose value may be one of a specified list of legal enumerated
values. The option will use the specified name key, have a default value of def aul t , and hel p will form the
descriptive part of the help text. The option will only support those valuesin the al | owed_val ues list. The
optiona map argument is a dictionary that can be used to convert input values into specific legal valuesin the
al | owed_val ues list. If thevalue of i gnor e_case is0 (the default), then the values are case-sensitive. If
thevalueof i gnor e_case is1, then valueswill be matched case-insensitively. If thevalueof i gnor e_case
is 2, then values will be matched case-insensitively, and all input values will be converted to lower case.

Li st Vari abl e(key, hel p, default, nanes, [map])
Returns a tuple of arguments to set up an option whose value may be one or more of a specified list of legal
enumerated values. The option will use the specified name key, have a default value of def aul t, and hel p
will form the descriptive part of the help text. The option will only accept the values “all”, “none”, or the values
in the nanes list. More than one value may be specified, separated by commas. The default may be a string of

Iy
=== SCONS 185

Pac

Pat

comma-separated default values, or a list of the default values. The optional map argument is a dictionary that
can be used to convert input values into specific legal valuesin the nanes list. (Note that the additional values
accepted through the use of anmap are not reflected in the generated help message).

kageVari abl e(key, hel p, default)

Returns a tuple of arguments to set up an option whose value is a path name of a package that may be enabled,
disabled or given an explicit path name. The option will use the specified name key, have a default value of
def aul t, and hel p will form the descriptive part of the help text. The option will support the values yes,
true, on, enabl e or sear ch, in which case the specified def aul t will be used, or the option may be set to
an arbitrary string (typically the path name to a package that is being enabled). The option will also support the
valuesno, f al se, of f ordi sabl e to disable use of the specified option.

hVari abl e(key, hel p, default, [validator])

Returns a tuple of arguments to set up an option whose value is expected to be a path name. The option will use
the specified name key, have a default value of def aul t , and hel p will form the descriptive part of the help
text. Anadditional val i dat or may be specified that will be called to verify that the specified path is acceptable.
SCons supplies the following ready-made validators:

Pat hVari abl e.Pat hExi st s
Verify that the specified path exists (this the default behavior if noval i dat or issupplied).

Pat hVari abl e.Pat hl sFi |l e
Verify that the specified path exists and isaregular file.

Pat hVari abl e.Pat hl sDi r
Verify that the specified path exists and is a directory.

Pat hVvari abl e.Pat hl sDi r Creat e
Verify that the specified path exists and is a directory; if it does not exist, create the directory.

Pat hVari abl e.Pat hAccept
Accept the specific path name argument without validation, suitable for when you want your usersto be able
to specify adirectory path that will be created as part of the build process, for example.

Y ou may supply your own validator function, which must accept three arguments (key, the name of the variable
to be set; val , the specified value being checked; and env, the construction environment) and should raise an
exception if the specified value is not acceptable.

These functions make it convenient to create a number of variables with consistent behavior in a single call to the

Add

var

Var i abl es method:;
s. AddVari abl es(
Bool Vari abl e(
"war ni ngs",
hel p="conpilation with -Wall and simlar",
def aul t =1,

).
EnunVar i abl e(
"debug”,
hel p="debug out put and synbol s",
def aul t ="no",
al | owed_val ues=("yes", "no", "full"),
map={},
i gnorecase=0, # case sensitive

).

~

'—‘-‘ SCONS 186

Li st Vari abl e(
"shared",
hel p="libraries to build as shared libraries",
default="all",
nanmes=li st _of |ibs,

)

PackageVari abl e(
"x11",
hel p="use X11 installed here (yes = search sone pl aces)",
def aul t ="yes",

)

Pat hVari abl e(
"qtdir",
hel p="where the root of @ is installed",
defaul t=qtdir),

Pat hVari abl e(
"foopat h",
hel p="where the foo library is installed",
def aul t =f oopat h,
val i dat or =Pat hVari abl e. Pat hl sDi r,

)

)

Node Objects

SCons represents objects that are the sources or targets of build operations as Nodes, which areinternal data structures.
There are anumber of user-visible types of nodes: File Nodes, Directory Nodes, Vaue Nodes and Alias Nodes. Some
of the node types have public attributes and methods, described below. Each of the node types has a global function
and a matching environment method to create instances. Fi | e, Di r, Val ue and Al i as.

Filesystem Nodes

The Fil e and Di r functiongmethods return File and Directory Nodes, respectively. File and Directory Nodes
(collectively, Filesystem Nodes) represent build components that correspond to an entry in the computer's filesystem,
whether or not such an entry exists at the time the Node is created. You do not usually need to explicitly create
filesystem Nodes, since when you supply a string as a target or source of a Builder, SCons will create the Nodes as
needed to populate the dependency graph. Builders return the target Node(s) in the form of alist, which you can then
make use of. However, since filesystem Nodes have some useful public attributes and methods that you can use in
SConscript files, it is sometimes appropriate to create them manually, outside the regular context of a Builder call.

The following attributes provide information about a Node:

node.pat h
The build path of the given file or directory. This path is relative to the top-level directory (where the
SConst r uct fileisfound). The build path is the same as the source path if variant_dir is not being used.

node.abspat h
The absolute build path of the given file or directory.

node.r el pat h
The build path of the given file or directory relative to the root SConstruct file's directory.

node.sr cnode()
The sr cnode method returns another File or Directory Node representing the source path of the given File or
Directory Node.

Iy
=== SCONS 187

Examples:

CGet the current build dir's path, relative to top.
Dir('.").path

Current dir's absolute path
Dir('.").abspath

Current dir's path relative to the root SConstruct file's directory
Dir('.").relpath

Next line is always '.', because it is the top dir's path relative to itself.
Dir('# ').path

Source path of the given source file.
File('foo.c').srcnode().path

Builders return lists of File objects:
foo = env. Progran{(' foo.c')
print("foo will be built in", foo[0O].path)

Filesystem Node objects have methods to create new File and Directory Nodes relative to the original Node. There
are also times when you may need to refer to an entry in a filesystem without knowing in advance whether it's afile
or adirectory. For those situations, there is an Ent r y method of filesystem node objects, which returns a Node that
can represent either afile or adirectory.

If the original Node is a Directory Node, these methods will place the new Node within the directory the original
Node represents:

node.Di r (nane)
Returns adirectory Node nane which is a subdirectory of the directory represented by node.

node.Fi | e(nane)
Returns afile Node narre in the directory represented by node.

node.Ent r y(nane)
Returns an unresolved Node nane in the directory represented by node.

If the original Node is a File Node, these methods will place the the new Node in the same directory as the one the
original Node represents:

node.Di r (hane)
Returns a Node nane for adirectory in the parent directory of the file represented by node.

node.Fi | e(nane)
Returns aNode nane for afilein the parent directory of the file represented by node.

node.Ent r y(nane)
Returns an unresolved Node nane in the parent directory of the file represented by node.

For example:

Cet a Node for a file within a directory
incl = Dir("include")

Iy
=== SCONS 188

f = incl.File(' header.h')

CGet a Node for a subdirectory within a directory
dist = Dir('project-3.2.1")
src =dist.Dir('src')

Cet a Node for a file in the same directory
cfile = File('sanple.c'")
hfile = cfile.File(' sanple.h")

Comnbi ned exanpl e

docs = Dir('docs')

html = docs.Dir('htm")

index = html .File('index. htm")
css = index. File('app.css')

Value and Alias Nodes

SCons provides two other Node types to represent object that will not have an equivalent filesystem entry. Such Nodes
always need to be created explicitly.

The Al i as method returns an Alias Node. Aliases are virtua objects - they will not themselves result in physical
objects being constructed, but are entered into the dependency graph related to their sources. An diasis checked for
up to date by checking if its sources are up to date. An aliasis built by making sure its sources have been built, and if
any building took place, applying any Actions that are defined as part of the alias.

AnAl i as cdl createsan entry in the alias namespace, which isused for disambiguation. If an alias source hasastring
valued name, it will be resolved to afilesystem entry Node, unlessit isfound in the alias namespace, in which caseit it
resolved to the matching alias Node. As aresult, the order of Al i as callsissignificant. An alias can refer to another
alias, but only if the other alias has previously been created.

The Val ue method returns a Vaue Node. Vaue nodes are often used for generated data that will not have any
corresponding filesystem entry, but will be used to determine whether a build target is out of date, or to include as
part of a build Action. Common examples are timestamp strings, revision control version strings and other run-time
generated strings.

A Value Node can also be the target of a builder.

EXTENDING SCONS

SCons is designed to be extensible through provided facilities, so changing the code of SCons itself is only rarely
needed to customize its behavior. A number of the main operations use callable objects which can be supplemented
by writing your own. Builders, Scanners and Tools each use a kind of plugin system, allowing you to easily drop
in new ones. Information about creating Builder Objects and Scanner Objects appear in the following sections. The
instructions SCons actually usesto construct things are called Actions, and it is easy to create Action Objects and hand
them to the objectsthat need to know about those actions (besides Builders, see AddPost Act i on, AddPr eAct i on
and Al i as for some examples of other places that take Actions). Action Objects are also described below. Adding
new Tool modulesis described in Tool Modules

Builder Objects

scons can be extended to build different types of targets by adding new Builder objects to a construction environment.
In general, you should only need to add anew Builder object when you want to build anew type of file or other external
target. For output file types scons aready knows about, you can usually modify the behavior of premade Builders
such asPr ogr am Qbj ect orLi br ar y by changing the construction variablesthey use ($CC, $LI NK, etc.). Inthis

Iy
=== SCONS 189

manner you can, for example, change the compiler to use, which is simpler and less error-prone than writing a new
builder. The documentation for each Builder lists which construction variablesit uses.

Buil

der objects are created using the Bui | der factory function. Once created, a builder is added to an environment

by entering it in the $BUI LDERS dictionary in that environment (some of the examplesin this section illustrate this).
Doing so automatically triggers SCons to add a method with the name of the builder to the environment.

The

act

pre

suf

Bui | der function accepts the following keyword arguments:

ion

The command used to build the target from the source. act i on may be astring representing atemplate command
line to execute, alist of strings representing the command to execute with its arguments (suitable for enclosing
white space in an argument), a dictionary mapping source file name suffixes to any combination of command
line strings (if the builder should accept multiple source file extensions), a Python function, an Action object (see
Action Objects) or alist of any of the above.

An action function must accept three arguments: sour ce, t ar get and env. sour ce isalist of source nodes;
t ar get isalist of target nodes; env isthe construction environment to use for context.

Theact i on and gener at or arguments must not both be used for the same Builder.

fix

The prefix to prepend to the target file name. pr ef i x may beastring, afunction (or other callable) that takestwo
arguments (a construction environment and alist of sources) and returns a prefix string, or adictionary specifying
amapping from a specific source suffix (of the first source specified) to a corresponding target prefix string. For
the dictionary form, both the source suffix (key) and target prefix (value) specifications may use environment
variable substitution, and the target prefix may also be acallable object. The default target prefix may beindicated
by adictionary entry with akey of None.

b = Builder("build it < $SOURCE > $TARCGET",
prefix="file-")

def gen_prefix(env, sources):
return "file-" + env[' PLATFORM] + '-'

b = Builder("build it < $SOURCE > $TARCGET",

prefix=gen_prefi x)
b = Builder("build it < $SOURCE > $TARCGET",

suf fix={None: "file-", "$SRC SFX A': gen_prefix})
fix

The suffix to append to the target file name. Specified in the same manner asfor pr ef i x above. If the suffix isa
string, then scons prependsa’ . ' to the suffix if it's not already there. The string returned by the callable object
or obtained from the dictionary is untouched and you need to manually prependa’ . ' if oneisrequired.

b = Builder("build it < $SOURCE > $TARCGET"
suffix="-file")

def gen_suffix(env, sources):
return "." + env[' PLATFORM] + "-file"

b = Builder("build_it < $SOURCE > $TARCET",
suf fi x=gen_suf fi x)

~

'—‘-‘ SCONS 190

b = Builder("build_it < $SOURCE > $TARCET",
suf fi x={None: ".sfx1", "$SRC SFX A"': gen_suffix})

ensure_suffix
If set to atrue value, ensures that targets will end in suf f i x. Thus, the suffix will also be added to any target
strings that have a suffix that is not already suf f i x. The default behavior (also indicated by afalse value) isto
leave unchanged any target string that looks like it already has a suffix.

bl = Builder("build it < $SOURCE > $TARGET"

suffix = ".out")
b2 = Builder("build it < $SOURCE > $TARGET"
suffix = ".out",

ensur e_suf fi x=Tr ue)
env = Environnent ()
env[' BU LDERS][’ Bl']
env[' BU LDERS][’ B2']

bl
b2

Builds "foo.txt" because ensure suffix is not set.
env.Bl('foo.txt', 'foo.in")

Builds "bar.txt.out" because ensure suffix is set.
env.B2('bar.txt', '"bar.in")

src_suffix
The expected source file name suffix. sr c_suf f i x may beastring or alist of strings.

t ar get _scanner
A Scanner object that will be invoked to find implicit dependencies for this target file. This keyword argument
should be used for Scanner objectsthat find implicit dependencies based only on thetarget file and the construction
environment, not for implicit dependencies based on source files. See the section called “ Scanner Objects’ for
information about creating Scanner objects.

sour ce_scanner
A Scanner object that will be invoked to find implicit dependencies in any source files used to build this target
file. This is where you would specify a scanner to find things like #i ncl ude lines in source files. The pre-
built Di r Scanner Scanner object may be used to indicate that this Builder should scan directory trees for on-
disk changes to files that scons does not know about from other Builder or function calls. See the section called
“Scanner Objects’ for information about creating your own Scanner objects.

target _factory
A factory function that the Builder will use to turn any targets specified as stringsinto SCons Nodes. By defaullt,
SCons assumesthat all targets are files. Other useful target_factory valuesinclude Dir, for when aBuilder creates
adirectory target, and Entry, for when a Builder can create either afile or directory target.

Example:

MakeDi r ect or yBui | der = Buil der (acti on=nmy_nkdir, target factory=Dr)
env = Environment ()

env. Append(BU LDERS={"' MakeDi rectory': MakeDirectoryBuil der})

env. MakeDirectory(' new directory', [])

Note that the call to this MakeDi r ect or y Builder needs to specify an empty source list to make the string
represent the builder's target; without that, it would assume the argument is the source, and would try to deduce

Iy
=== SCONS 191

the target name from it, which in the absence of an automatically-added prefix or suffix would lead to amatching
target and source name and acircular dependency.

source_factory

em

A factory function that the Builder will use to turn any sources specified as strings into SCons Nodes. By defaullt,
SCons assumes that all source are files. Other useful source factory valuesinclude Dir, for when a Builder uses
adirectory as a source, and Entry, for when a Builder can usefiles or directories (or both) as sources.

Example:

Col | ect Bui | der = Bui |l der (acti on=my_nkdir, source_factory=Entry)
env = Environment ()

env. Append(BU LDERS={"' Col | ect': Col | ectBui |l der})

env. Col l ect (' archive', ['directory nanme', 'file _nane'])

tter

A function or list of functions to manipulate the target and source lists before dependencies are established and
the target(s) are actually built. emi t t er can also be a string containing a construction variable to expand to an
emitter function or list of functions, or a dictionary mapping source file suffixes to emitter functions. (Only the
suffix of the first source fileis used to select the actual emitter function from an emitter dictionary.)

A function passed aseni t t er must accept three arguments: sour ce, t ar get and env. sour ce isalist of
source nodes, t ar get isalist of target nodes, env isthe construction environment to use for context.

An emitter must return a tuple containing two lists, the list of targets to be built by this builder, and the list of
sources for this builder.

Example:

def e(target, source, env):
return target + ['foo.foo'], source + ['fo00.src']

Sinple association of an emitter function with a Buil der.
b = Builder("ny_build < $TARGET > $SOURCE", enitter=e)

def e2(target, source, env):
return target + ['bar.foo'], source + ['bar.src']

Sinple association of a list of emtter functions with a Buil der.
b = Builder("ny_build < $TARGET > $SOURCE", enitter=[e, e2])

Calling an emtter function through a construction vari abl e.
env = Environment (MY_EM TTER=e)
b = Builder("ny_build < $TARGET > $SOURCE", enitter="$MY_EM TTER)

Calling a list of emitter functions through a construction vari abl e.
env = Environment (EM TTER LI ST=[e, e2])
b = Builder("ny_build < $TARGET > $SOURCE", enitter="$EM TTER LI ST')

Associating multiple emtters with different file
suffixes using a dictionary.
def e _sufl(target, source, env):

return target + ['another_target file'], source

~

'—‘-‘ SCONS 192

def e _suf?2(target, source, env):
return target, source + ['another_source file']

b = Buil der(
action="ny_build < $TARGET > $SOURCE",
emtter={'.sufl': e sufl, '.suf2: e_suf2}
)
mul ti

Specifies whether this builder is allowed to be called multiple times for the same target file(s). The default is
Fal se, which means the builder can not be called multiple times for the same target file(s). Calling a builder
multiple times for the same target simply adds additional source files to the target; it is not allowed to change the
environment associated with the target, specify additional environment overrides, or associate a different builder
with the target.

env
A construction environment that can be used to fetch source code using this Builder. (Note that this environment
is not used for normal builds of normal target files, which use the environment that was used to call the Builder
for the target file))

gener at or
A function that returns alist of actionsthat will be executed to build the target(s) from the source(s). The returned
action(s) may be an Action object, or anything that can be converted into an Action object (see the next section).

A function passed asgener at or must accept four arguments: sour ce, t ar get ,env andf or _si gnat ur e.
sour ce isalist of source nodes, t ar get isalist of target nodes, env isthe construction environment to use
for context, and f or _si gnat ur e is a Boolean value that tells the function if it is being called for the purpose
of generating a build signature (as opposed to actually executing the command). Since the build signature is used
for rebuild determination, the function should omit those elements that do not affect whether arebuild should be
triggered if f or _si gnat ur e istrue.

Example:

def g(source, target, env, for_signature):
return [["gcc", "

-c", "-0"] + target + source]

b = Buil der (gener at or =g)
The generator and action arguments must not both be used for the same Builder.

src_bui |l der
Specifies abuilder to use when a source file name suffix does not match any of the suffixes of the builder. Using
this argument produces a multi-stage builder.

si ngl e_source
Specifiesthat this builder expects exactly one sourcefile per call. Giving more than one source file without target
filesresultsin implicitly calling the builder multiple times (once for each source given). Giving multiple source
files together with target filesresultsinaUser Er r or exception.

sour ce_ext_match
When the specified act i on argument is a dictionary, the default behavior when a builder is passed multiple
sourcefilesisto make sure that the extensions of all the source filesmatch. If itislegal for thisbuilder to becalled
with alist of sourcefileswith different extensions, thischeck can be suppressed by settingsour ce_ext _mat ch
to Fal se or some other non-true value. In this case, scons will use the suffix of the first specified source file to
select the appropriate action from theact i on dictionary.

Iy
=== SCONS 193

In the following example, the setting of sour ce_ext _nat ch prevents scons from exiting with an error due to
the mismatched suffixes of f 00. i nandf 0o. extr a.

b = Builder(action={'.in" : 'build $SOURCES > $TARCGET'},
sour ce_ext _mat ch=Fal se)

env = Environnment (BU LDERS={"' MyBui | d' : b})
env. MyBui | d(' foo.out', ['foo.in", 'foo.extra'])

env
A construction environment that can be used to fetch source code using this Builder. (Note that this environment
is not used for normal builds of normal target files, which use the environment that was used to call the Builder
for the target file)

b = Builder(action="build < $SOURCE > $TARGET")
env = Environnment (BU LDERS={' MyBui | d' : b})
env. MyBui I d(' foo.out', 'foo.in', nmy_arg='xyzzy')

chdir
A directory from which scons will execute the action(s) specified for this Builder. If the chdi r argument isa
string or a directory Node, scons will change to the specified directory. If the chdi r isnot a string or Node and
is non-zero, then scons will change to the target file's directory.

Note that scons will not automatically modify its expansion of construction variables like $TARGET and
$SOURCE when using the chdi r keyword argument--that is, the expanded file names will still be relative
to the top-level directory containing the SConst r uct file, and consequently incorrect relative to the chdir
directory. Builders created using chdi r keyword argument, will need to use construction variable expansions
like ${ TARGET. fi | e} and ${ SOURCE. fi | e} to usejust the filename portion of the targets and source.

b = Builder(action="build < ${SOURCE. file} > ${TARGET.file}",
chdi r =1)

env = Environment (BU LDERS={' MyBui | d* : b})

env. MyBui | d(* sub/dir/foo.out’, 'sub/dir/foo.in")

Warning

Python only keeps one current directory location even if there are multiple threads. This means that use
of the chdi r argument will not work with the SCons - j option, because individual worker threads
spawned by SCons interfere with each other when they start changing directory.

Any additional keyword arguments supplied when a Builder object is created (that is, when the Bui | der functionis
called) will be set in the executing construction environment when the Builder object is called. The canonical example
here would be to set a construction variable to the repository of a source code system.

Any such keyword arguments supplied when a Builder object is called will only be associated with the target created
by that particular Bui | der call (and any other files built as aresult of the call). These extra keyword arguments are
passed to the following functions: command generator functions, function Actions, and emitter functions.

Action Objects

TheBui | der factory functionwill turnitsact i on keyword argument into an appropriate internal Action object, as
will the Conmaind function. Y ou can also explicitly create Action objectsfor passing to Bui | der , or other functions
that take actionsasarguments, by callingthe Act i on factory function. This may more efficient when multiple Builder

Iy
=== SCONS 194

objects need to do the same thing rather than letting each of those Builder objects create a separate Action object. It
also allows more flexible configuration of an Action object. For example, to control the message printed when the
action is taken you need to create the action object using Act i on.

The Act i on factory function returns an appropriate object for the action represented by the type of the act i on
argument (the first positional parameter):

» If acti on isalready an Action object, the object is simply returned.

» If acti on is astring, a command-line Action is returned. If such a string begins with @ the command line is
not printed. If the string begins with hyphen (-), the exit status from the specified command is ignored, allowing
execution to continue even if the command reports failure:

Action(' $CC -c -0 $TARGET $SOURCES)

Doesn't print the line being executed.
Action(' @uild $TARGET $SOURCES')

lgnores return val ue
Action('-build $TARGET $SOURCES')

» Ifacti onisalist, thenalist of Action objectsisreturned. An Action object is created as necessary for each element
in thelist. If an element within the list isitself alist, the embedded list is taken as the command and arguments to
be executed via the command line. This allows white space to be enclosed in an argument rather than taken as a
separator by defining acommand in alist within alist:

Action([['cc', '-c', '-DWH TE SPACE, '-0', '$TARGET', ' $SOURCES]])

« If acti on isacallable object, a Function Action is returned. The callable must accept three keyword arguments:
target, source and env. t arget is a Node object representing the target file, sour ce is a Node object
representing the source file and env isthe construction environment used for building the target file.

Thet ar get and sour ce arguments may be lists of Node objects if there is more than one target file or source
file. The actual target and source file name(s) may be retrieved from their Node objects viathe built-in Python st r
function:

target file name = str(target)
source file nanes = [str(x) for x in source]

The function should return O or None to indicate a successful build of the target file(s). The function may raise an
exception or return a non-zero exit status to indicate an unsuccessful build.

def build_it(target=None, source=None, env=None):
build the target fromthe source
return O

a = Action(build_ it)
» If acti on isnot one of the above types, no action object is generated and Act i on returns None.

The environment method form env. Act i on will expand construction variables in any argument strings, including
act i on, atthetimeitiscalled, using the construction variablesin the construction environment through which it was
called. The global function form Act i on delays variable expansion until the Action object is actually used.

Iy
=== SCONS 195

The optional second argument to Act i on is used to control the output which is printed when the Action is actually
performed. If this parameter is omitted, or if the value is an empty string, a default output depending on the type of
the action is used. For example, a command-line action will print the executed command. The following argument
types are accepted:

« If the second argument is a string, or if the cndst r keyword argument is supplied, the string defines what is
printed. Substitution is performed on the string before it is printed. The string typically contains substitutable
variables, notably $TARGET(S) and $SOURCE(S) , or consistsof just asinglevariablewhichisoptionally defined
somewhere else. SConsitself heavily usesthe latter variant.

« If the second argument is a function, or if the st r f unct i on keyword argument is supplied, the function will
be called to obtain the string to be printed when the action is performed. The function must accept three keyword
arguments: t ar get , sour ce and env, with the same interpretation as for a callable act i on argument above.
The function is responsible for handling any required substitutions.

« If the second argument isNone, or if cndst r =None is supplied, output is suppressed entirely.
Thecrdstr and st rf uncti on keyword arguments may not both be supplied in asingle call to Act i on
Printing of action stringsis affected by the setting of $PRI NT_CVD_LI NE_FUNC.

Examples:

def build_ it(target, source, env):
build the target fromthe source
return O

def string_it(target, source, env):
return "building '%"' from'%'" % (target[0], source[O0])

Use a positional argunent.
Action(build_it, string_it)
Action(build_it, "building '$TARCGET' from ' $SOURCE ")

Alternatively, use a keyword argunent.

= Action(build_it, strfunction=string_it)

= Action(build_ it, crmdstr="building ' $TARCGET' from ' $SOURCE ")
You can provi de a configurable variable.
| = Action(build_it, '$STRING T')

Any additional positional arguments, if present, may either be construction variables or lists of construction variables
whose valueswill beincluded in the signature of the Action (the build signature) when deciding whether atarget should
be rebuilt because the action changed. Such variables may also be specified using thevar | i st keyword parameter;
both positional and keyword forms may be present, and will be combined. This is necessary whenever you want a
target to be rebuilt when a specific construction variable changes. This is not often needed for a string action, as the
expanded variables will normally be part of the command line, but may be needed if a Python function action usesthe
value of a construction variable when generating the command line.

def build_it(target, source, env):
build the target fromthe ' XXX construction variabl e
with open(target[0], 'wW) as f:
f.wite(env[' XXX])
return O

Iy
=== SCONS 196

Use positional argunents.
a =

Action(build_it, "$STRING T, ['XXX])

Alternatively, use a keyword argunent.
a = Action(build_it, varlist=['XXX])

The Act i on factory function can be passed the following optional keyword arguments to modify the Action object's
behavior:

chdir

ex

If chdi r istrue (the default is Fal se), SCons will change directories before executing the action. If the value
of chdi r isastring or a directory Node, SCons will change to the specified directory. Otherwise, if chdi r
evaluates true, SCons will change to the target file's directory.

Note that SCons will not automatically modify its expansion of construction variables like STARGET and
$SOURCE when using the chdi r parameter - that is, the expanded file names will till be relative to the top-
level directory containing the SConst ruct file, and consequently incorrect relative to the chdir directory.
Builders created using chdi r keyword argument, will need to use construction variable expansions like
${TARGET. fi |l e} and${ SOURCE. fi | e} tousejust thefilename portion of the targets and source. Example:

a = Action("build < ${SOURCE.file} > ${TARGET.file}", chdir=True)

tstatfunc

If provided, must be a callable which accepts asingle parameter, the exit status (or return value) from the specified
action, and which returns an arbitrary or modified value. This can be used, for example, to specify that an Action
object's return value should be ignored under special conditions and SCons should, therefore, consider that the
action always succeeds. Example:

def al ways succeed(s):
Always return O, which indicates success.
return O

a = Action("build < ${SOURCE.fil e} > ${TARGET.file}",
exi t st at f unc=al ways_succeed)

bat ch_key

If provided, indicates that the Action can create multiple target files by processing multiple independent source
files simultaneously. (The canonical exampleis "batch compilation” of multiple object files by passing multiple
sourcefilesto asingleinvocation of acompiler such asMicrosoft's Visual C/ C++ compiler.) If thebat ch_key
argument evaluates True and is not a callable object, the configured Action object will cause scons to collect
all targets built with the Action object and configured with the same construction environment into single
invocations of the Action object's command line or function. Command lines will typically want to use the
$CHANGED SOURCES construction variable (and possibly $CHANGED TARCETS as well) to only pass to the
command line those sources that have actually changed since their targets were built. Example:

a = Action('build $CHANGED SCURCES', batch_key=Tr ue)

Thebat ch_key argument may also be acallable function that returnsakey that will be used to identify different
"batches" of target files to be collected for batch building. A bat ch_key function must accept four parameters:
action, env, target and sour ce. The first parameter, act i on, is the active action object. The second
parameter, env, isthe construction environment configured for thetarget. Thet ar get and sour ce parameters
are the lists of targets and sources for the configured action.

~

=!t=5CcoNS 197

The returned key should typically be atuple of values derived from the arguments, using any appropriate logic to
decide how muiltiple invocations should be batched. For example, abat ch_key function may decide to return
the value of aspecific construction variable from env which will cause sconsto batch-build targets with matching
values of that construction variable, or perhaps return the Python i d() of the entire construction environment,
in which case scons will batch-build all targets configured with the same construction environment. Returning
None indicates that the particular target should not be part of any batched build, but instead will be built by a
separate invocation of action's command or function. Example;

def batch_key(action, env, target, source):
tdir = target[O].dir
if tdir.na == 'special:
Don't batch-build any target
in the special/ subdirectory.
return None
return (id(action), id(env), tdir)
a = Action('build $CHANGED SOURCES', batch_key=bat ch_key)

Miscellaneous Action Functions

SCons supplies Action functions that arrange for various common file and directory manipulations to be performed.
These are similar in concept to "tasks" in the Ant build tool, although the implementation is dightly different. These
functions do not actually perform the specified action at the time the function is called, but rather are factory functions
which return an Action object that can be executed at the appropriate time.

There are two natural ways that these Action Functions are intended to be used.

First, if you need to perform the action at the time the SConscript file is being read, you can use the Execut e global
function:

Execut e(Touch('file'))

Second, you can use these functions to supply Actions in a list for use by the env. Command method. This can
allow you to perform more complicated sequences of file manipulation without relying on platform-specific external
commands:

env = Environment (TMPBUI LD="/t np/ bui | ddir")
env. Comand(
target='foo0.out',
source='foo.in",
act i on=[
Mdi r (' $TMPBUI LD) ,
Copy(' $TMPBUI LD, ' ${SOURCE.dir}"),
“cd $TMPBU LD && make",
Del ete(' $TMPBUI LD),
1,
)

Chnod(dest, npde)
Returns an Action object that changes the permissions on the specified dest file or directory to the specified
node which can be octal or string, similar to the bash command. Examples:

Execut e(Chnod(' file', 00755))

Iy
=== SCONS 198

env. Command(' foo.out', 'foo.in',
[Copy(' $TARGET', ' $SOURCE),
Chrod("' $TARGET' , 00755)1])

Execut e(Chnod(' file', "ugo+w'))
env. Command(' foo.out', 'foo.in',
[Copy(' $TARGET', ' $SOURCE),
Chrmod(' $TARGET' , "ugo+w')])

The behavior of Chrod islimited on Windows, see the notesin the Python documentation for os. chnod, which
is the underlying function.

Copy(dest, src)

De

Returns an Action object that will copy the sr ¢ sourcefile or directory to thedest destination file or directory.
Examples:

Execut e(Copy(' foo.output', 'foo.input'))
env. Conmand(' bar.out', 'bar.in', Copy('$TARGET', ' $SOURCE'))

ete(entry, [nust_exist])

Returns an Action that deletes the specified ent ry, which may be a file or a directory tree. If a directory is
specified, the entire directory tree will be removed. If themust _exi st flag isset to atrue value, then a Python
error will be raised if the specified entry does not exist; the default is false, that is, the Action will silently do
nothing if the entry does not exist. Examples:

Execut e(Del ete(' /tnp/ buil droot"'))

env. Comand(
'foo.out',
'foo.in',
action=[
Del ete(' ${ TARGET.dir}"),
MyBui | dAct i on,

)

Execute(Del ete(' file that _nust exist', nust_exist=True))

Mkdi r (name)

Returns an Action that creates the directory nanme and all needed intermediate directories. nanme may also bea
list of directoriesto create. Examples:

Execut e(Mkdir (' /tnp/ out putdir'))

env. Comand(
'foo.out',
'foo.in',
acti on=[
Mcdir (' /tnp/builddir'),

~

'—‘-‘ SCONS 199

Copy(' /tnp/ builddir/foo.in', '$SOURCE),
"cd /tnp/builddir & make",
Copy (' $TARGET', '/tnp/ buil ddir/foo.out'),
1,
)

Move(dest, src)
Returnsan Action that movesthe specified sr ¢ fileor directory to the specifieddest fileor directory. Examples:

Execut e(Move(' fil e.destination', 'file.source'))

env. Comand(
"output _file',
"input_file',
acti on=[MyBui | dActi on, Mve(' $TARGET', 'file_created_by_ MBuil dAction')],

)

Touch(fil e)
Returns an Action that updates the modification time on the specified f i | e. Examples:

Execut e(Touch('file_to be touched'))
env. Comrmand(' marker', ‘input file', action=[M/Buil dAction, Touch('$TARGET)])
Variable Substitution

Before executing acommand, scons performs parameter expansion (substitution) on the string that makes up the action
part of the builder. Theformat of asubstitutable parameter is${ expr essi on} . If expr essi onreferstoavariable,
the bracesin ${ expr essi on} can be omitted unless the variable name isimmediately followed by a character that
could either be interpreted as part of the name, or is Python syntax such as [(for indexing/slicing) or . (for attribute
access - see Special Attributes below).

If expr essi on refers to a construction variable, it is replaced with the value of that variable in the construction
environment at thetime of execution. If expr essi on lookslikeavariable namebut is not defined in the construction
environment it is replaced with an empty string. If expr essi on refers to one of the Special Variables (see below)
the corresponding value of the variableis substituted. expr essi on may also be a Python expression to be eval uated.
See Python Code Substitution below for a description.

SCons uses the following rules when converting construction variables into command line strings:
» If thevalueisastring it isinterpreted as space delimited command line arguments.

» If thevalueisalistitisinterpreted as alist of command line arguments. Each element of the list is converted to
astring.

» Anything that isnot alist or string is converted to a string and interpreted as a single command line argument.

» Newline characters (\ n) delimit lines. The newline parsing is done after all other parsing, so it is not possible for
arguments (e.g. file names) to contain embedded newline characters.

 For alitera $ use $$. For example, $$FOOwill be left in the final string as $FOO.

When abuild actionisexecuted, ahash of the command lineis saved, together with other information about thetarget(s)
built by the action, for future usein rebuild determination. Thisiscalled the build signature (or build action signature).

Iy
=== SCONS 200

The escape sequence $(subexpr essi on $) may be used to indicate parts of a command line that may change
without causing arebuild--that is, which are not to be included when calculating the build signature. All text from $(
up to and including the matching $) will be removed from the command line before it is added to the build signature
while only the $(and $) will be removed before the command is executed. For example, the command line string:

"echo Last build occurred $($TODAY $). > $TARCGET"

would execute the command:

echo Last build occurred $TODAY. > $TARGET

but the build signature added to any target files would be computed from:

echo Last build occurred . > $TARGET

While construction variables are normally directly substituted, if aconstruction variable hasavaluewhichisacalable
Python object (afunction, or aclasswitha__cal | __ method), that object is called during substitution. The callable
must accept four arguments. t ar get , sour ce, env and f or _si gnhat ur e. sour ce isalist of source nodes,
t ar get isalist of target nodes, env isthe construction environment to use for context, and f or _si gnat ureisa
boolean value that tells the callableif it isbeing called for the purpose of generating a build signature. Since the build
signature is used for rebuild determination, variable elements that do not affect whether a rebuild should be triggered
should be omitted from the returned string if f or _si gnat ur e istrue. See $(and $) above for the syntax.

SCons will insert whatever the callable returns into the expanded string:

def foo(target, source, env, for_signature):
return "bar"

WII expand $BAR to "bar baz"
env = Environnent (FOO=f oo, BAR="$FQO baz")

Asareminder, substitution happens when $BAR is actually used in abuilder action. The value of env[' BAR] will
be exactly asit was set: " $FOO baz" . This can make debugging tricky, as the substituted result is not available at
the time the SConscript files are being interpreted and thus not availableto pr i nt () . However, you can perform the
substitution on demand by calling theenv. subst method for this purpose.

Y ou can usethisfeatureto passargumentsto acallable variable by creating acallable classthat stores passed arguments
in the instance, and then uses them (inthe __cal | __ method) when the instance is called. Note that in this case,
the entire variable expansion must be enclosed by curly braces so that the arguments will be associated with the
instantiation of the class:

cl ass foo:
def __init_ (self, arg):
self.arg = arg

def _ call__(self, target, source, env, for_signature):
return self.arg + " bar”

WIIl expand $BAR to "my argunent bar baz"
env=Envi r onnent (FOO=f oo, BAR="${FOQ(' my argunent')} baz")

Iy
=== SCONS 201

Substitution: Special Variables
Besidesregular construction variables, scons providesthefollowing Special Variablesfor usein expanding commands:

$CHANGED SOURCES
Thefile names of all sources of the build command that have changed since the target was last built.

$CHANGED TARCGETS
Thefile names of al targets that would be built from sources that have changed since the target was last built.

$SOURCE
The file name of the source of the build command, or the file name of the first source if multiple sources are
being built.

$SOURCES
The file names of the sources of the build command.

$TARCGET
Thefile name of the target being built, or the file name of the first target if multiple targets are being built.

$TARGETS
Thefile names of all targets being built.

$UNCHANGED _SOURCES
Thefile names of all sources of the build command that have not changed since the target was last built.

$UNCHANGED TARGETS
Thefile names of al targets that would be built from sources that have not changed since the target was last built.

These names are reserved and may not be assigned to or used as construction variables. SCons computes them in a
context-dependent manner and they and are not retrieved from a construction environment.

For example, the following builder cal:

env = Environment (CC='cc')
env. Comand(
target=['foo'],
source=['foo.c', "bar.c'],
action=' @cho $CC -c -o $TARGET $SOURCES

)

would produce the following output:

cc -c -o foo foo.c bar.c

In the previous example, astring ${ SOURCES][1] } would expand to: bar . c.

Substitution: Special Attributes

A variable name may have the following modifiers appended within the enclosing curly braces to access properties of
the interpolated string. These are known as special attributes.

base - The base path of the file name, including the directory path but excluding any suffix.
di r - The name of the directory in which thefile exists.

Iy
=== SCONS 202

fil e - Thefile name, minus any directory portion.

fil ebase-Likefi | e but minusitssuffix.

suf fi x - Just the file suffix.

abspat h - The absolute path name of thefile.

r el pat h - The path name of thefile relative to the root SConstruct file's directory.

posi x - The path with directories separated by forward slashes (/). Sometimes necessary on Windows systems when
a path references afile on other (POSIX) systems.

wi ndows - The path with directories separated by backslashes (\ \). Sometimes necessary on POSIX-style systems
when a path references afile on other (Windows) systems. wi n32 is a (deprecated) synonym for wi ndows.

sr cpat h - Thedirectory and file name to the source file linked to thisfile through Var i ant Di r (). If thisfileisn't
linked, it just returns the directory and filename unchanged.

srcdi r - Thedirectory containing the source file linked to thisfile through Var i ant Di r (). If thisfile isn't linked,
it just returns the directory part of the filename.

r sr cpat h - Thedirectory and file name to the source file linked to thisfilethrough Var i ant Di r (). If thefile does
not exist locally but existsin a Repository, the path in the Repository is returned. If thisfileisn't linked, it just returns
the directory and filename unchanged.

r srcdi r - The Repository directory containing the sourcefile linked to thisfile through Var i ant Di r (). If thisfile
isn't linked, it just returns the directory part of the filename.

For example, the specified target will expand as follows for the corresponding modifiers:

$TARCGET => sub/dir/file.x

${ TARGET. base} => sub/dir/file

${ TARGET. di r} => sub/dir

${ TARGET. fi | e} => file.x

${ TARGET. fi | ebase} = file

${ TARGET. suf fi x} = . X

${ TARGET. abspat h} => [/top/dir/sub/dir/file.x

${ TARGET. r el pat h} => sub/dir/file.x

$TARCGET = ../dir2/file.x

${ TARGET. abspat h} => [top/dir2/file.x

${ TARGET. r el pat h} => ../dir2/file.x
SConscri pt (' src/ SConscript', variant_dir="sub/dir")
$SOURCE => sub/dir/file.x

${ SOURCE. sr cpat h} => src/file.x

${ SOURCE. srcdi r} => src
Repository('/usr/repository')

$SOURCE => sub/dir/file.x

${ SOURCE. r sr cpat h} => [usr/repository/src/file.x
${ SOURCE. rsrcdi r} => [usr/repository/src

Some modifiers can be combined, like ${ TARCET. sr cpat h. base) , ${ TARGET. fi | e. suf fi x}, etc.

Python Code Substitution

If a substitutable expression using the notation ${ expr essi on} does not appear to match one of the other
substitution patterns, it is evaluated as a Python expression. This uses Python's eval function, with the gl obal s
parameter set to the current environment's set of construction variables, and theresult substituted in. Soin thefollowing
Case:

Iy
=== SCONS 203

env. Comand(
"foo.out', 'foo.in', "echo ${COND==1 and ' FOO or 'BAR } > $TARGET"

)

the command executed will be either

echo FOO > f o0o0. out

or

echo BAR > f 00. out

according to the current valueof env[' COND'] when the command isexecuted. The evaluation takes place when the
target is being built, not when the SConscript isbeing read. So if env[' COND] ischanged later in the SConscript,
the final value will be used.

Here'samore complete example. Note that all of COND, FOO, and BAR are construction variables, and their values are
substituted into the final command. FOOis alist, so its elements are interpol ated separated by spaces.

env=Envi r onnent ()
env['COND'] =1
env['FOO] = ['fool', 'fo002']
env[' BAR] = 'barbar'
env. Comand(
"foo.out', 'foo.in', "echo ${COND==1 and FOO or BAR} > $TARGET"
)

will execute:

echo fool foo2 > foo. out

In point of fact, Python expression evaluation is how the special attributes are substituted: they are simply attributes of
the Python objects that represent $TARGET, $SOURCES, etc., which SCons passesto eval which returns the value.

Note

Use of the Python eval function is considered to have security implications, since, depending on input
sources, arbitrary unchecked strings of code can be executed by the Python interpreter. Although SCons makes
use of it in a somewhat restricted context, you should be aware of this issue when using the ${ pyt hon-

expression-for-subst} form.

Scanner Objects

Scanner objects are used to scan specific file types for implicit dependencies, for example embedded preprocessor/
compiler directives that cause other files to be included during processing. SCons has a number of pre-built Scanner
objects, so it is usualy only necessary to set up Scanners for new file types. You do this by calling the Scanner
factory function. Scanner accepts the following arguments. Only f unct i on isrequired; the rest are optional:

function
A scanner function to call to process a given Node (usually afile) and return alist of Nodes representing the
implicit dependencies (usually files) found in the contents. The function must accept three required arguments,
node, env and pat h, and an optional fourth, ar g. node is the interna SCons node representing the file to

Iy
=== SCONS 204

scan, env is the construction environment to use during the scan, and pat h is a tuple of directories that can
be searched for files, as generated by the optional scanner pat h_f uncti on (see below). If ar gunent was
supplied when the Scanner object was created, it is given as ar g when the scanner function is caled; since
ar gunent isoptional, the defaultisnoar g.

The function can use use st r (node) to fetch the name of thefile, node.di r to fetch the directory thefileisin,
node.get _cont ent s() to fetch the contents of the file as bytes or node.get _t ext cont ent s() to fetch
the contents of the file astext.

The function must take into account the pat h directories when generating the dependency Nodes. To illustrate
this, a C language source file may contain aline like #i ncl ude "f o0o. h". However, there is no guarantee
that f 00. h existsin the current directory: the contents of $CPPPATH s passed to the C preprocessor which will
look in those places for the header, so the scanner function needs to look in those places as well in order to build
Nodes with correct paths. Using Fi ndPat hDi r s with an argument of CPPPATHasthepat h_functi onin
the Scanner cal means the scanner function will be called with the paths extracted from $CPPPATH in the
environment env passed asthe pat hs parameter.

Note that the file to scan is not guaranteed to exist at the time the scanner is called - it could be a generated file
which has not been generated yet - so the scanner function must be tolerant of that.

Alternatively, you can supply a dictionary as the f unct i on parameter, to map keys (such as file suffixes) to
other Scanner objects. A Scanner created this way serves as a dispatcher: the Scanner's skeys parameter is
automatically populated with the dictionary's keys, indicating that the Scanner handles Nodes which would be
selected by those keys; the mapping is then used to pass the file on to a different Scanner that would not have
been selected to handle that Node based on itsown skeys.

nane
The name to use for the Scanner. This is mainly used to identify the Scanner internally. The default value is
" NONE" .

ar gument
If specified, will be passed to the scanner function f unct i on and the path function pat h_f unct i on when
called, as the optional parameter each of those functions takes.

skeys
Scanner key(s) indicating the file types this scanner is associated with. Used internally to select an appropriate
scanner. In the usual case of scanning for file names, this argument will be alist of suffixes for the different file
types that this Scanner knows how to scan. If skeys is astring, it will be expanded into a list by the current
environment.

pat h_function
A Python function that takes four or five arguments. a construction environment, a Node for the directory
containing the SConscript file in which the first target was defined, alist of target nodes, a list of source nodes,
and the value of ar gunent if it was supplied when the Scanner was created. Must return a tuple of directories
that can be searched for files to be returned by this Scanner object. (Note that the Fi ndPat hDi r s function can
be used to return aready-made pat h_f unct i on for a given construction variable name, instead of having to
write your own function from scratch.)

node_cl ass
The class of Node that should be returned by this Scanner object. Any strings or other objects returned by the
scanner function that are not of this class will be run through the function supplied by the node_factory
argument. A value of None can be supplied to indicate no conversion; the default is to return File nodes.

node_factory
A Python function that will take astring or other object and turn it into the appropriate class of Nodeto be returned
by this Scanner object, asindicated by node_cl ass.

Iy
=== SCONS 205

scan_check
A Python function that takes two arguments, a Node (file) and a construction environment, and returns whether
the Node should, in fact, be scanned for dependencies. This check can be used to eliminate unnecessary calls to
the scanner function when, for example, the underlying file represented by a Node does not yet exist.

recursive
Specifieswhether this scanner should bere-invoked on the dependency filesreturned by the scanner. If omitted, the
Node subsystem will only invoke the scanner on the file being scanned and not recurse. Recursion is needed when
the files returned by the scanner may themselves contain further file dependencies, as in the case of preprocessor
#i ncl ude lines. A value that evaluates true enables recursion; recursive may be a callable function, in which
caseit will becalled with alist of Nodesfound and should return alist of Nodesthat should be scanned recursively;
this can be used to select a specific subset of Nodes for additional scanning.

Once created, a Scanner can added to an environment by setting it in the $SCANNERS list, which automatically
triggers SCons to also add it to the environment as a method. However, usually a scanner is not truly standalone,
but needs to be plugged in to the existing selection mechanism for deciding how to scan source files based on
filename extensions. For this, SCons has a global Sour ceFi | eScanner object that is used by the Cbj ect ,
Shar edObj ect and St ati cObj ect builders to decide which scanner should be used. You can use the
Sour ceFi | eScanner . add_scanner () method to add your own Scanner object to the SCons infrastructure
that builds target programs or libraries from alist of source files of different types:

def xyz _scan(node, env, path):
contents = node.get text contents()
Scan the contents and return the included files.

XYZScanner = Scanner (xyz_scan)

Sour ceFi | eScanner . add_scanner (' . xyz', XYZScanner)

env. Program(' my_prog', ['filel.c', 'file2.f', "file3.xyz'])
Tool Modules

Additional tools can be added to a project either by placing theminasi t e_t ool s subdirectory of asite directory,
or in a custom location specified to scons by giving thet ool pat h keyword argument to Envi r onnent . A tool
moduleisaform of Python module, invoked internally using the Python import mechanism, so atool can consist either
of asingle source file taking the name of the tool (e.g. myt ool . py) or adirectory taking the name of the tool (e.g.
nyt ool /) whichcontainsatleastan __init__ . py file

Thet ool pat h parameter takesalist asits value:

env = Environnent (tool s=['default', 'foo'], tool path=['tools'])

Thislooksfor atool specification module (myt ool . py, or directory nyt ool) indirectory t ool s andinthestandard
locations, as well as using the ordinary default tools for the platform.

Directoriesspecifiedviat ool pat h are prepended to the existing tool path. Thedefault tool pathisanysi t e_t ool s
directories, so toolsin aspecifiedt ool pat h take priority, followed by toolsinasi t e_t ool s directory, followed
by built-in tools. For example, adding a tool specification module gcc. py to the toolpath directory would override
the built-in gcc tool. The tool path is stored in the environment and will be used by subsequent calls to the Tool
method, aswell asby env. Cl one.

Iy
=== SCONS 206

base = Environnent (t ool pat h=[' custom path'])
derived = base. C one(tool s=[' customtool'])
deri ved. Cust onBui | der ()

A tool specification module must include two functions:

gener at e(env, **kwar gs)
Modify the construction environment env to set up necessary construction variables, Builders, Emitters, etc., so
the facilities represented by the tool can be executed. Care should be taken not to overwrite construction variables
intended to be settable by the user. For example:

def generate(env):

if "MYTOOL' not in env:
env[' MYTOCL'] = env. Detect (" mytool")
if ' MYTOOLFLAGS not in env:
env[' MYTOOLFLAGS'] = SCons. Util.CLVar('--nyarg')

The gener at e function may use any keyword arguments that the user supplies via kwar gs to vary its
initialization.

exi st s(env)
Return atrue value if the tool can be called in the context of env. else false. Usually this means looking up one
or more known programs using the PATH from the supplied env, but the tool can make the exists decision in

any way it chooses.
Note

At the moment, user-added tools do not automatically have their exi st's function called. As a result, it
is recommended that the gener at e function be defensively coded - that is, do not rely on any necessary
existence checks aready having been performed. This is expected to be a temporary limitation, and the
exi st s function should still be provided.

The elements of thet ool s list may also be functions or callable objects, in which case the Envi r onnment method
will call those objects to update the new construction environment (see Tool for more details):

def ny_tool (env):
env[' XYZZY'] = 'xyzzy'

env = Environnent (tool s=[ny_tool])

The individual elements of the t ool s list may also themselves be lists or tuples of the form (t ool nane,
kw_di ct) . SCons searches for the t ool name specification file as described above, and passes kw_di ct , which
must be a dictionary, as keyword arguments to the tool's gener at e function. The gener at e function can use the
arguments to modify the tool's behavior by setting up the environment in different ways or otherwise changing its
initialization.

in tool s/ ny_tool.py:

def generate(env, **kwargs):
Sets MY_TOCOL to the value of keyword 'argl' '1' if not supplied
env[' MYy_TOOL'] = kwargs.get('argl', '1')

Iy
=== SCONS 207

def exists(env):
return True

in SConstruct:
env = Environment (tool s=['default', ('ny_tool', {"argl': "abc'})],
t ool path=['tool s'])

Thetool specification (ny_t ool intheexample) can usethe $PLATFCORMvariablefrom the construction environment
it is passed to customize the tool for different platforms.

Tools can be "nested" - that is, they can be located within a subdirectory in the toolpath. A nested tool name uses a
dot to represent a directory separator

nanmespaced bui | der
env = Environnment (ENV=0s. envi ron. copy(), tool s=['SubDir1. SubDir2. SoneTool '])
env. SoneTool (targets, sources)

Search Pat hs

SCons\ Tool \ Subbi r 1\ SubDbi r 2\ SoneTool . py

SCons\ Tool \ SubDi r 1\ SubDi r 2\ SomeTool \ __init__. py

.\site_scons\site_tool s\SubDir 1\ SubDi r 2\ SoneTool . py

.\site_scons\site_tool s\SubDir1\ SubDi r 2\ SoneTool\ __init__.py

SYSTEM-SPECIFIC BEHAVIOR

scons and its configuration files are very portable, due largely to its implementation in Python. There are, however,
afew portability issues waiting to trap the unwary.

.C File Suffix

scons handles the upper-case . Cfile suffix differently, depending on the capabilities of the underlying system. On
a case-senditive system such as Linux or UNIX, scons treats afile with a. C suffix as a C++ source file. On a case-
insensitive system such as Windows, scons treats afile with a. C suffix asa C sourcefile.

Fortran File Suffixes

There are several ways source file suffixes impact the behavior of SCons when working with Fortran language code
(not al are system-specific, but they are included here for compl eteness).

As the Fortran language has evolved through multiple standards editions, projects might have a need to handle files
from different language generations differently. To this end, SCons dispatches to a different compiler dialect setup
(expressed as a set of construction variables) depending on the file suffix. By default, all of these setups start out the
same, but individual construction variables can be modified as needed to tune agiven dialect. Each of these dialactshas
atool specification module whose documentati on describes the construction variables associated with that dialect: . f
(asswell as. for and. ftn)inf ortran; (construction variables start with FORTRAN) . f 77 inf 77; (construction
variables start with F77) . f 90 inf 90; (construction variables start with F90) . f 95 inf 95; (construction variables
start with F95) . f 03 inf 03; (construction variables start with FO3) . f 08 inf 08 (construction variables start with
F08).

While SCons recognizes multiple internal dialects based on filename suffixes, the convention of various available
Fortran compilersisto assign an actual meaning to only two of these suffixes: . f (aswell as. f or and. f t n) refersto
the fixed-format source code that was the only available option in FORTRAN 77 and earlier, and . f 90 refersto free-
format source code which became available as of the Fortran 90 standard. Some compilers recognize suffixes which
correspond to Fortran specifications later then F90 as equivalent to . f 90 for this purpose, while some do not - check

Iy
=== SCONS 208

the documentation for your compiler. An occasionally suggested policy suggestionistouseonly . f and. f 90 as
Fortran filename suffixes. The fixed/free form determination can usually be controlled explicitly with compiler flags
(e.g. - f fi xed- f or mfor gfortran), overriding any assumption that may be made based on the source file suffix.

The source file suffix does not imply conformance with the similarly-named Fortran standard - a suffix of . f 08 does
not mean you are compiling specifically for Fortran 2008. Normally, compilers provide command-line options for
making this selection (e.g. - st d=f 2008 for gfortran).

For dialects from F90 on (including the generic FORTRAN dialect), a suffix of . nod is recognized for Fortran
modules. These files are a side effect of compiling a Fortran source file containing module declarations, and must
be available when other code which declares that it uses the module is processed. SCons does not currently have
integrated support for submodules, introduced in the Fortran 2008 standard - the invoked compiler will produce results,
but SConswill not recognize . snod files as tracked objects.

On a case-sensitive system such as Linux or UNIX, a file with a an upper-cased suffix from the set . F, . FOR,
. FTN, . F90, . F95,. FO3 and . FO8 istreated as a Fortran source file which shall first be run through the standard
C preprocessor. The lower-cased versions of these suffixes do not trigger this behavior. On systems which do not
distinguish between uppper and lower case in filenames, this behavior is not available, but files suffixed with either
. FPP or . f pp are always passed to the preprocessor first. This matches the convention of gfortran from the
GNU Compiler Callection, and also followed by certain other Fortran compilers. For these two suffixes, the generic
FORTRAN dialect will be selected.

SCons itself does not invoke the preprocessor, that is handled by the compiler, but it adds construction variables
which are applicable to the preprocessor run. You can see this difference by examining $FORTRANPPCOM and
$FORTRANPPCOMSTR which are used instead of $FORTRANCOMand $FORTRANCOVSTR for that dialect.

Windows: Cygwin Tools and Cygwin Python vs. Windows Pythons

Cygwin supplies aset of tools and utilities that let users work on a Windows system using a POSI X -like environment.
The Cygwin tools, including Cygwin Python, do this, in part, by sharing an ability to interpret POSIX-style path
names. For example, the Cygwin tools will internally trandate a Cygwin path name like/ cygdri ve/ c/ nydi r to
an equivalent Windows pathname of C: / mydi r (equivalentto C: \ nydi r).

Versions of Python that are built for native Windows execution, such as the python.org and ActiveState versions,
do not understand the Cygwin path name semantics. This means that using a native Windows version of Python to
build compiled programs using Cygwin tools (such as gcc, bison and flex) may yield unpredictable results. "Mixing
and matching” in this way can be made to work, but it requires careful attention to the use of path names in your
SConscript files.

In practice, users can sidestep the issue by adopting the following guidelines: When using Cygwin's gcc for compiling,
use the Cygwin-supplied Python interpreter to run scons; when using Microsoft Visual C/C++ (or some other "native"
Windows compiler) use the python.org, Microsoft Store, ActiveState or other native version of Python to run scons.

This discussion largely applies to the msys2 environment as well (with the use of the mingw compiler toolchain), in
particular the recommendation to use the msys2 version of Python if running scons from inside an msys2 shell.

Windows: scons. bat file

On Windows, if sconsis executed viaawrapper scons. bat batch file, there are (at |east) two ramifications. Note
thisis no longer the default - scons installed via Python"s pip installer will have an scons.exe which does not have
these limitations:

First, Windows command-line users that want to use variabl e assignment on the command line may have to put double
guotes around the assignments, otherwise the Windows command shell will consume those as arguments to itself,
not to scons:

Iy
=== SCONS 209

scons " FOO=BAR' "BAZ=BLEH"

Second, the Cygwin shell does not recognize typing scons at the command line prompt as referring to this wrapper.
Y ou can work around this either by executingscons. bat (including the extension) from the Cygwin command line,
or by creating awrapper shell script named scons which invokesscons. bat .

MinGW

The MinGW bi n directory must be in your PATH environment variable or the[' ENV'] [' PATH] construction
variable for scons to detect and use the MinGW tools. When running under the native Windows Python; interpreter,
scons will prefer the MinGW tools over the Cygwin tools, if they are both installed, regardless of the order of the bin
directoriesin the PATH variable. If you have both MSVC and MinGW installed and you want to use MinGW instead
of MSVC, then you must explicitly tell sconstouse MinGW by passingt ool s=[' m ngw] totheEnvi r onment
function, because sconswill prefer the MSV C tools over the MinGW tools.

ENVIRONMENT

In general, scons is not controlled by environment variables set in the shell used to invoke it, leaving it up to the
SConscript file author to import those if desired. However the following variables are imported by sconsitself if set:

SCONS LIB DR
Specifies the directory that contains the scons Python module directory. Normally scons can deduce this, but in
some circumstances, such asworking with asource release, it may be necessary to specify (for example, / horre/
aroach/ scons-src-0. 01/ src/ engi ne).

SCONSFLAGS
A string containing options that will be used by scons in addition to those passed on the command line. Can be
used to reduce frequent retyping of common options. The contents of SCONSFLAGS are considered before any
passed command line options, so the command line can be used to override SCONSFLAGS optionsif necessary.

SCONS_CACHE_MSVC_CONFI G
(Windows only). If set, save the shell environment variables generated when setting up the Microsoft Visua
C++ compiler (and/or Build Tools) to a cache file, to give these settings, which are relatively expensive to
generate, persistence across scons invocations. Use of this option is primarily intended to aid performance in
tightly controlled Continuous Integration setups.

If settoaTrue-likevalue(" 1" ," true" or" Tr ue") will cachetoafilenamed. scons_nsvc_cache. j son
in the user's home directory. If set to a pathname, will use that pathname for the cache.

Note: use this cache with caution as it might be somewhat fragile: while each mgjor toolset version (e.g. Visua
Studio 2017 vs 2019) and architecture pair will get separate cache entries, if toolset updates cause a change to
settings within a given release series, scons will not detect the change and will reuse old settings. Remove the
cache file in case of problems with this. scons will ignore failures reading or writing the file and will silently
revert to non-cached behavior in such cases.

Available since scons 3.1 (experimental).

QrDI R
If using the gt tool, thisisthe path to the Qt installation to build against. SCons respects this setting becauseit is
along-standing convention in the Qt world, where multiple Qt installations are possible.

SEE ALSO

The SCons User Guide at https://scons.org/doc/production/HTML/scons-user.html

Iy
=== SCONS 210

https://scons.org/doc/production/HTML/scons-user.html

The SCons Design Document (ol d)

The SCons Cookbook at https:.//scons-cookbook.readthedocs.io for examples of how to solve various problems with
SCons.

SCons source code on GitHub [https://github.com/SCons/scons]

The SCons API Reference https://scons.org/doc/production/HTML/scons-api/index.html (for internal details)

AUTHORS

Originally: Steven Knight <kni ght @al dnt . conp and Anthony Roach
<aroach@l ectri ceyebal | . conp.

Since 2010: The SCons Development Team <scons- dev@cons. or g>.

Iy
=== SCONS 211

https://scons-cookbook.readthedocs.io
https://github.com/SCons/scons
https://github.com/SCons/scons
https://scons.org/doc/production/HTML/scons-api/index.html

